>>442
つづき

ショルツは証明を詳しく調べるにつれて、関係する数学オブジェクトに魅了されるようになった。
すなわち、数論、代数学、幾何学、解析学という離れた分野を神秘的に統一するモデュラ形式と楕円曲線と呼ばれる構造である。関係するオブジェクトの種類に関して読むことはおそらく問題そのものよりもずっと魅力的だったと彼は言った。
ショルツの数学的好みは具体的になって行った。現在、まだ彼は整数に関する基礎的方程式に根を持つ問題に引きつけられている。
規則正しく難解な数学的構造を作っている非常に実体のある根は彼に具体的だと感じさせる。"結局、数論に興味を持っている"と彼は言った。
彼の抽象的構築があちこち遡って通常の整数に関する小さな発見へ導く時が最も幸福だと思うと言った。
高校の後、ショルツはボン大学で数論と幾何学における、この関心を追求し続けた。

ボン大学での彼の数学クラスで、彼は決してノゥトを取らなかったとHellmannは回想した。
Hellmannはショルツのクラスメイトだった。ショルツは瞬時にコース教材を理解出来たとHellmannは言った。
"単に理解しているのみならず、ある種の深いレヴェルにおいて本当に理解している。だから彼も忘れないだろう"。

ショルツは数論幾何学の分野で研究を始めた。数論幾何学は代数方程式(数、変数、指数だけが関係するxy2+3y=5のような方程式)に対する整数解を理解するために幾何学的ツールを使う。
この型の方程式に対して、p-進数と呼ばれる代替数体系の中で解を持つかどうかを研究することが有効だ。実数のようにp-進数は整数と分数の間のギャプを埋めることによって構築される。
しかし、これらの数体系は、どこにギャプが存在し、どの数が互いと接近しているのかという非標準的な概念に基づく。
p-進数体系においては、2つの数の違いが小さいのではなく、その違いがpにより多数回割り切れるならば2つの数は近いと考える。

(引用終り)
以上