>>318
>無限公理によるωは、ノイマンのsuc(a)=a∪{a}の超限回繰り返しではない
>なぜなら
>ω=suc(a)=a∪{a}となるようなa(つまりωの一番右の元!)
>が存在しないから

そう! その指摘は正しいね
ωは、下記の通り、”任意の自然数よりも大きい最小の超限順序数 ω”で、「 0 でも後続順序数でもない順序数」だ
「順序位相(英語版)に関する極限点」だから、極限を用いて考えれば良い
有限順序数のn→∞の極限として、ωを理解するのが分り易い

それは、ツェルメロ構成に同じだ
ノイマン後者関数の定義から、極限でωがでる

同様に、
ツェルメロ後者関数の定義から、極限でωがでる。そして、またωの後者が始まる。そう理解するのが、現代数学の正しい理解だね(^^

(参考>>164もご参照)
https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0
極限順序数
(抜粋)
集合論および順序論(英語版)における極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。
任意の自然数よりも大きい最小の超限順序数 ω は、それよりも小さい任意の順序数(つまり自然数)n が常にそれよりも大きい別の自然数(なかんずく n + 1)を持つから、極限順序数である。
順序数に関するフォンノイマンの定義(英語版)を用いれば、任意の順序数はそれより小さい順序数全体の成す整列集合として与えられる。
(全ての有限)順序数からなる空でない集合の合併は最大元を持たないから、常に極限順序数である。
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
https://ja.wikipedia.org/wiki/%E9%9B%86%E7%A9%8D%E7%82%B9
集積点/極限点
(抜粋)
定義
位相空間 X の部分集合 S に対し、X の点 x が S の集積点であるとは、x を含む任意の開集合が少なくとも一つの x と異なる S の点を含むことを指す
この条件は T1-空間においては、x の任意の近傍が S の点を無限に含むという条件に同値である
https://ja.wikipedia.org/wiki/T1%E7%A9%BA%E9%96%93
T1空間
(抜粋)
X が T1-空間であるとは、X の任意の相異なる二点が分離できるときに言う
(引用終り)