>>193
>1)ツェルメロ構成での任意aの後者関数;
> suc(a) := {a}による構成は、正則性公理に反しない
> たとえ、それで無限上昇列が出来ても、ということは認めますか? Y/N
Y
>2)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成で、
> 無限公理を適用して、自然数nをすべて含む無限集合が出来たとき、
> それはいわゆる自然数Nよりも、余計な元、
> 即ち、超限順序数に属するべき(有限でない)元が
> 生成され、含まれていることに同意しますか? Y/N
Y
>>195
>では、この超限順序数に属するべき(有限でない)元とは、何なのでしょうか?
馬鹿が考えるような{…{}…}ではないけどな
>ツェルメロ構成でできる集合は、任意aの後者関数;suc(a) := {a}以外は無いですね
相変わらず底抜けの馬鹿だな、貴様はwwwwwww
{}∈X∧(∀x∈X⇒{x}∈X)
(Xは空集合を要素とし、xがXの要素なら{x}もXの要素である)
という条件を満たすXについて
「yがXの要素なら、yは空集合か
y={x}で、Xの要素となるxが存在する」
∀y.((y∈X⇒y={}∨∃x.({x}=y∧x∈X))
とか思ってるだろ?w
そこが馬鹿だというんだよwww
実際には
「Xの空集合でないyで、
Xのいかなる要素xについても
{x}=yとならないものが存在する」
∃y.(y∈X∧¬(y={})∧∀x.(x∈X⇒¬({x}=y))
が成立しても矛盾はない
つまり
>超限順序数に属するべき(有限でない)元、それは、消去法で、
>超限回の空集合Φに対する後者関数による超限多重集合 {・・{Φ}・・}(ω+アルファ回{}多重)
>でなければならない
なんてことはいえない
「縁なき衆生は度し難し」
>それはお認めになるんですよね?
認めねぇよ この大馬鹿者めwwwwwww
現代数学の系譜 カントル 超限集合論
■ このスレッドは過去ログ倉庫に格納されています
201第六天魔王 ◆y7fKJ8VsjM
2019/10/07(月) 19:12:33.19ID:rpPbPz0q■ このスレッドは過去ログ倉庫に格納されています