>>181
つづき

 数学の議論では、変数 i を含む項 T と、集合 I があるとき、i∈I に対する T 全体からなる“集合”を考える、ということがしばしばあります。
 大抵の場合、i∈I のとき、T は i に無関係なある集合 A に属しているので、これを集合と見なすことは分出公理により正当化されるのですが、順序数の議論のような、集合論として“きわどい分野”での議論を行うときは、このような条件が成り立っていない場合があります。
 ところで、この場合の項 T は、集合 I の元 i に対してある対象 T を表しており、i に T を対応させる関数が与えられたとみなすことができます。
 そこで、集合 I の関数による像 { T | i∈I } となる集合が存在すると言う意味の置換公理:

[∀x ∀y ∀z ( ( P(x, y) ∧ P(x, z) ) → y = z ) ] → ∀a ∃b ∀y [ y∈b ⇔ ∃x ( x∈a ∧ P(x, y) )]
を仮定します。
 この公理は一見わかりにくい形をしていますが、左辺の ∀x ∀y ∀z ( ( P(x, y) ∧ P(x, z) ) → y = z ) というのは、x と y に関する関係 P(x, y) が一価関係であるということ、言い換えると、与えられた x に対して P(x, y) を満たす y を対応させる対応が x の関数になっていることを意味します。
 従って、上の置換公理の述べるところは、一価関係 P が表す関数による集合 a の像となる集合が存在する、ということを意味しています。このような集合 b は、外延性公理により唯一つであることが証明できます。

 さて、この置換公理を仮定すると、変数 y を含まない任意の命題 R に対して R ∧ x = y という命題を P(x, y) と書けば、これは明らかに一価関係です。
ゆえに、置換公理によって ∀a ∃b ∀y [ y∈b ⇔ ∃x ( x∈a ∧ R ∧ x = y ) ] すなわち ∀a ∃b ∀x [ x∈b ⇔ ( x∈a ∧ R ) ] となって、これは分出公理に他なりません。すなわち分出公理は置換公理から導出できるのです。

(引用終り)
以上