>それでも、もし比が等しいという駄々をこねるなら、以下について反例を挙げてみなさい。
・有理数x+有理数r=有理数z (→ x:zは整数比)
・有理数x+無理数r=無理数z (→ x:zは非整数比)

上記は、正しいです。
私の主張は、別のことです。

rが、p^{1/(p-1)}の場合は、z=x+p^{1/(p-1)}です。

rが、(ap)^{1/(p-1)}の場合は、
z*(a^{1/(p-1)}=x*(a^{1/(p-1)}+(ap)^{1/(p-1)}となります。

z*(a^{1/(p-1)}=Z, x*(a^{1/(p-1)}=Xとおくと、
X:Z=x:zとなります。

rが、(ap)^{1/(p-1)}の場合は、rは有理数となりえます。