>0にはならない任意のf(p)に対して、
 r^(p-1){(y/r)^p-1}=p f(p){x^(p-1)/f(p)p+…+r^(p-2)x/f(p)}
と変形すれば君の理屈で
 r^(p-1)=p f(p)
になるね。それに対して、xyzの比が変わらないことを示してみて?

f(p)=aとします。a=1
p=2の場合、r=p=2
3^2+4^2=(3+2)^2
x=3,y=4,z=5 x:y:z=3:4:5

a=2, r=ap=2*2=4
6^2+8^2=(6+4)^2
X=6,Y=8,Z=10 X:Y:Z=6:8:10=3:4:5
となります。