pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
x^p+y^p=z^pをz=x+rとおいて、x^p+y^p=(x+r)^pとする。
r=p^{1/(p-1)}となるので、x^p+y^p=(x+p^{1/(p-1)})^p=z^pとなる。
xを有理数とすると、zは無理数となる。
∴x^p+y^p=z^pは自然数解を持たない。
探検
フェルマーの最終定理の簡単な証明
■ このスレッドは過去ログ倉庫に格納されています
1日高
2019/09/23(月) 09:33:36.12ID:HXbAy1I+567日高
2019/10/18(金) 19:42:41.89ID:I0wlpDZ5 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
568132人目の素数さん
2019/10/18(金) 19:47:56.66ID:QYvSGR07 ↑マイナス∞点
569132人目の素数さん
2019/10/18(金) 19:52:01.75ID:wc94mGiK 出来ない理由がないことを証明してから使えよ。
570日高
2019/10/18(金) 19:58:31.65ID:I0wlpDZ5 >出来ない理由がないことを証明してから使えよ
出来ない理由がわからないので、お聞きしました。
出来ない理由がわからないので、お聞きしました。
571日高
2019/10/18(金) 20:01:18.10ID:I0wlpDZ5 >↑マイナス∞点
理由教えていただけないでしょうか。
理由教えていただけないでしょうか。
572132人目の素数さん
2019/10/18(金) 20:45:26.06ID:T4CI8M5u >>565
zが自然数でない場合を仮定しても証明にはならないよ
zが自然数でない場合を仮定しても証明にはならないよ
573日高
2019/10/18(金) 21:01:29.33ID:I0wlpDZ5 >zが自然数でない場合を仮定しても証明にはならないよ
理由を教えていただけないでしょうか。
理由を教えていただけないでしょうか。
574132人目の素数さん
2019/10/18(金) 21:06:56.19ID:T4CI8M5u zが自然数でない場合を仮定しても、x^p+y^p=z^pが自然数解を持たないことの証明にはならないよ
比が同じだからというのは理由にならない。現に比が同じという理由でペテンを働く日高という人物がいる
比が同じだからというのは理由にならない。現に比が同じという理由でペテンを働く日高という人物がいる
575132人目の素数さん
2019/10/18(金) 21:23:06.73ID:1cEZHsWB >>566
その理屈でいうなら、できる理由がないからできないね
その理屈でいうなら、できる理由がないからできないね
576132人目の素数さん
2019/10/18(金) 22:12:16.54ID:wc94mGiK577日高
2019/10/19(土) 05:57:33.53ID:db1xuLqY >比が同じだからというのは理由にならない。
どうして、理由にならないのでしょうか?
どうして、理由にならないのでしょうか?
578日高
2019/10/19(土) 06:01:42.15ID:db1xuLqY 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
579日高
2019/10/19(土) 06:46:50.38ID:db1xuLqY x(x-2)=3×4ならば、
x(x-2)=a3×(1/a)4とすると、
左辺の左側=右辺の左側, 左辺の右側=右辺の右側
x=a3, (x-2)=(1/a)4となります。
x=1+√13, a=(1+√13)/3
x(x-2)=a3×(1/a)4とすると、
左辺の左側=右辺の左側, 左辺の右側=右辺の右側
x=a3, (x-2)=(1/a)4となります。
x=1+√13, a=(1+√13)/3
580132人目の素数さん
2019/10/19(土) 07:13:20.97ID:bT32Owxi 私は齢70を越えた老人である。
私の朝は、まずティンポの勃起度を確認することから始まる。
長年のセンズリのし過ぎで、先端がやや曲がっているのがやや難点だが、
いまだ女の生身を知らぬ、汚れなき威容がまことに神々しい。
その神々しいティンポをさすりながら、ライフワークとして取り組んでいる
フェルマーの最終定理の証明をさらに磨きをかけるため、きょうも朝から精進
している。
まずはここで↑の2つの投稿を試みた。
私の証明は、「超数学」的思考方法によるものなので、ここに集う私の熱狂的
なファンの方にとっては何回であろうとは思うが、頭でなく、下半身で考えるこ
とに練達すれば必ず理解できるようになる。
今日も皆さんの活発な投稿を歓迎したい。
私の朝は、まずティンポの勃起度を確認することから始まる。
長年のセンズリのし過ぎで、先端がやや曲がっているのがやや難点だが、
いまだ女の生身を知らぬ、汚れなき威容がまことに神々しい。
その神々しいティンポをさすりながら、ライフワークとして取り組んでいる
フェルマーの最終定理の証明をさらに磨きをかけるため、きょうも朝から精進
している。
まずはここで↑の2つの投稿を試みた。
私の証明は、「超数学」的思考方法によるものなので、ここに集う私の熱狂的
なファンの方にとっては何回であろうとは思うが、頭でなく、下半身で考えるこ
とに練達すれば必ず理解できるようになる。
今日も皆さんの活発な投稿を歓迎したい。
581132人目の素数さん
2019/10/19(土) 07:16:56.11ID:bT32Owxi ティンポが爆発しそうなあまり、誤記してしまった。
> 私の証明は、「超数学」的思考方法によるものなので、ここに集う私の熱狂的
>なファンの方にとっては何回であろうとは思うが、頭でなく、下半身で考えるこ
>とに練達すれば必ず理解できるようになる。
ファンの方にとっては難解であろうとは思うが
大変失礼した。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
という思考方法は、何人も犯すことができない、大宇宙の真理である。
> 私の証明は、「超数学」的思考方法によるものなので、ここに集う私の熱狂的
>なファンの方にとっては何回であろうとは思うが、頭でなく、下半身で考えるこ
>とに練達すれば必ず理解できるようになる。
ファンの方にとっては難解であろうとは思うが
大変失礼した。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
という思考方法は、何人も犯すことができない、大宇宙の真理である。
582ID:1lEWVa2s
2019/10/19(土) 07:31:23.35ID:ZIJiN+a0583132人目の素数さん
2019/10/20(日) 16:44:44.17ID:2hQE7KkD584132人目の素数さん
2019/10/21(月) 11:46:21.34ID:+SrWJVQH 死んだか
585日高
2019/10/22(火) 18:56:49.94ID:2TKl3AzC 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
586132人目の素数さん
2019/10/22(火) 19:27:16.97ID:9wKwCM07 本物か?
構われないからって指摘全部無視してずーっと同じこと書き込み続けるつもりか?
構われないからって指摘全部無視してずーっと同じこと書き込み続けるつもりか?
587132人目の素数さん
2019/10/22(火) 19:46:35.98ID:4E3SG2QV588日高
2019/10/22(火) 20:37:14.79ID:2TKl3AzC >「指摘全部無視して」
どの部分のことでしょうか?
どの部分のことでしょうか?
589132人目の素数さん
2019/10/22(火) 21:21:23.77ID:4E3SG2QV590132人目の素数さん
2019/10/22(火) 21:24:04.66ID:1Bz6dc/M 「フェルマーの最終定理を証明しました」というメール。また来た。
毎度毎度「間違っていたら指摘してください」と言ってくるけど、自分の論考のバグ出しのために他人の時間を無料で使えると思ってるところがまず間違いだよ。そこ指摘したい気もするけど、そもそも反応を返したくない。
毎度毎度「間違っていたら指摘してください」と言ってくるけど、自分の論考のバグ出しのために他人の時間を無料で使えると思ってるところがまず間違いだよ。そこ指摘したい気もするけど、そもそも反応を返したくない。
591132人目の素数さん
2019/10/22(火) 22:49:40.41ID:9wKwCM07 >>588
分からないんですか?
分からないんですか?
592日高
2019/10/23(水) 06:41:09.24ID:39Tkzd0q >分からないんですか?
分かりません。
分かりません。
593132人目の素数さん
2019/10/23(水) 07:45:44.29ID:HmU25hnz >>592
何故分からないんですか?
何故分からないんですか?
594日高
2019/10/23(水) 08:03:46.31ID:39Tkzd0q >何故分からないんですか?
どの部分のことを指しているのですか?
どの部分のことを指しているのですか?
595132人目の素数さん
2019/10/23(水) 08:21:10.58ID:3tv2d++s 馬鹿日高はこれを10回音読して下さい。
「フェルマーの最終定理を証明しました」というメール。また来た。
毎度毎度「間違っていたら指摘してください」と言ってくるけど、自分の論考のバグ出しのために他人の時間を無料で使えると思ってるところがまず間違いだよ。そこ指摘したい気もするけど、そもそも反応を返したくない。
「フェルマーの最終定理を証明しました」というメール。また来た。
毎度毎度「間違っていたら指摘してください」と言ってくるけど、自分の論考のバグ出しのために他人の時間を無料で使えると思ってるところがまず間違いだよ。そこ指摘したい気もするけど、そもそも反応を返したくない。
596132人目の素数さん
2019/10/23(水) 08:24:26.69ID:9K8zMWUB 私は70歳を超えた今日まで童貞を守ってきた。したがって私のティムポは汚れを知らない。
男女間の愛欲どころか、淡い恋らしき恋も経験したこともない。
そんな私の唯一の楽しみがフェルマーの最終定理の証明なのだ。簡にして要を極めた私の
証明は深い思想をたたえているので、なかなか万人には理解しがたい。
しかし、いつか必ず広く受け入れられることを確信している。だからこそメールもするし
ここの投稿も続ける。
男女間の愛欲どころか、淡い恋らしき恋も経験したこともない。
そんな私の唯一の楽しみがフェルマーの最終定理の証明なのだ。簡にして要を極めた私の
証明は深い思想をたたえているので、なかなか万人には理解しがたい。
しかし、いつか必ず広く受け入れられることを確信している。だからこそメールもするし
ここの投稿も続ける。
597日高
2019/10/23(水) 08:32:17.87ID:39Tkzd0q 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
598132人目の素数さん
2019/10/23(水) 08:54:13.88ID:HEY+Xltv599日高
2019/10/23(水) 09:44:19.34ID:39Tkzd0q >何故分からないんですか?
具体的に、指摘していただけないでしょうか。
具体的に、指摘していただけないでしょうか。
600132人目の素数さん
2019/10/23(水) 09:59:01.13ID:HEY+Xltv >>599
今までずーっと指摘されたことを、また具体的に言わないといけないんですか?
今までずーっと指摘されたことを、また具体的に言わないといけないんですか?
601日高
2019/10/23(水) 10:42:23.43ID:39Tkzd0q お願いします。
602132人目の素数さん
2019/10/23(水) 11:06:36.86ID:DEidpskE 無限ループw
603日高
2019/10/23(水) 11:09:05.09ID:39Tkzd0q お願いします。
604132人目の素数さん
2019/10/23(水) 11:12:02.70ID:OFk49pei 少なくとも、これまでのいくつかの掲示板を含む指摘すべてを読み返し、似たような指摘に対しては、過去自分がどのような返事をして、どのように解決していないのか説明するべき。
そうでないなら、メールを送りつけたり他人に質問する資格なし。
そうでないなら、メールを送りつけたり他人に質問する資格なし。
605日高
2019/10/23(水) 11:19:45.75ID:39Tkzd0q >どのように解決していないのか説明するべき。
最後まで、議論いただけたら幸いです。
最後まで、議論いただけたら幸いです。
606132人目の素数さん
2019/10/23(水) 11:21:08.13ID:HEY+Xltv >>601
少しは自分で考えたらどうですか?
少しは自分で考えたらどうですか?
607132人目の素数さん
2019/10/23(水) 11:25:23.33ID:A9Iimk0V この日高という人物は、間違いがあれば指摘せよと自分から指示しておきながら、いざ指摘があると、只「わかりません」とだけ返すことを繰り返してきた
指摘者たちは当然ながら、この日高という人物には、理解力がないばかりか、理解しようと努力もしないし、そもそも理解しようという意思がないものと解釈する
そして誰もいなくなった
指摘者たちは当然ながら、この日高という人物には、理解力がないばかりか、理解しようと努力もしないし、そもそも理解しようという意思がないものと解釈する
そして誰もいなくなった
608日高
2019/10/23(水) 11:27:24.63ID:39Tkzd0q >少しは自分で考えたらどうですか?
他人の考えを、聞くのも、重要だと思います。
他人の考えを、聞くのも、重要だと思います。
609日高
2019/10/23(水) 11:31:35.19ID:39Tkzd0q 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
610132人目の素数さん
2019/10/23(水) 11:37:10.92ID:sm7kH+YF 短期間に同じ内容を多数投稿する行為は「荒らし」だよ
611日高
2019/10/23(水) 11:41:12.96ID:39Tkzd0q >短期間に同じ内容を多数投稿する行為は「荒らし」だよ
「荒らし」に当たるかもしれませんが、
見やすくするためです。
「荒らし」に当たるかもしれませんが、
見やすくするためです。
612132人目の素数さん
2019/10/23(水) 12:24:15.13ID:HEY+Xltv613132人目の素数さん
2019/10/23(水) 13:10:13.81ID:Czdu4RSn 見やすくなってるとは思えないな
だいたい>>609のどこが証明になってるかちっともわからない
だいたい>>609のどこが証明になってるかちっともわからない
614日高
2019/10/23(水) 13:13:23.36ID:39Tkzd0q615132人目の素数さん
2019/10/23(水) 13:14:47.26ID:HEY+Xltv おじいちゃん、今までさんざん指摘されたでしょ
616132人目の素数さん
2019/10/23(水) 13:17:59.35ID:mwSqPBJF617日高
2019/10/23(水) 13:29:15.84ID:39Tkzd0q >どこが証明になってるかちっともわからないので
どの部分でしょうか?
どの部分でしょうか?
618132人目の素数さん
2019/10/23(水) 14:01:06.45ID:FGwQjqbk619日高
2019/10/23(水) 17:33:23.27ID:39Tkzd0q >唐突に結論が出ている
どの部分でしょうか?
どの部分でしょうか?
620日高
2019/10/23(水) 17:53:27.70ID:39Tkzd0q 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
621132人目の素数さん
2019/10/23(水) 18:00:30.98ID:HEY+Xltv ほらまた同じことを繰り返してる
622132人目の素数さん
2019/10/23(水) 18:08:22.37ID:xaHv+BNj 痴的ゾンビ
623132人目の素数さん
2019/10/23(水) 19:01:10.38ID:K9Rmj4oV624132人目の素数さん
2019/10/23(水) 20:15:10.96ID:9K8zMWUB フェルマーの最終定理は頭で考えてはならない。下半身、それもティムポで考えるのが
ベストである。勃起した状態であればさらに申し分ない。
ベストである。勃起した状態であればさらに申し分ない。
625ID:1lEWVa2s
2019/10/23(水) 20:22:23.42ID:jg8A3F2+ >>624
飽きました。
飽きました。
626日高
2019/10/23(水) 20:52:20.86ID:39Tkzd0q >X:Y:Z=x:y:zとなると、どうしてx^p+y^p=z^pは自然数解を持たないの?
x^p+y^p=(x+p^{1/(p-1)})^pは、xを有理数とすると、zは無理数となります。
x,y,zが、自然数解を持たないので、x:y:zは、整数比となりません。
X:Y:Z=x:y:zとなるので、X:Y:Zも、整数比となりません。
X:Y:Zが整数比とならないので、X,Y,Zも、自然数解を持ちません。
x^p+y^p=(x+p^{1/(p-1)})^pは、xを有理数とすると、zは無理数となります。
x,y,zが、自然数解を持たないので、x:y:zは、整数比となりません。
X:Y:Z=x:y:zとなるので、X:Y:Zも、整数比となりません。
X:Y:Zが整数比とならないので、X,Y,Zも、自然数解を持ちません。
627132人目の素数さん
2019/10/23(水) 20:55:36.99ID:K9Rmj4oV628日高
2019/10/23(水) 21:18:11.90ID:39Tkzd0q >x^p+y^p=(x+p^{1/(p-1)})^pが、xを有理数とすると、zは無理数となると、どうしてx,y,zが、自然数解を持たないの?
xを有理数,yを有理数としたとき、zが無理数となるならば、xを有理数としたときも、
zは無理数となります。
xが有理数、yが有理数、zが無理数ならば、x,y,zは、有理数解を持たないことになります。
x,y,zが有理数解を、持たないならば、自然数解も、持ちません。
xを有理数,yを有理数としたとき、zが無理数となるならば、xを有理数としたときも、
zは無理数となります。
xが有理数、yが有理数、zが無理数ならば、x,y,zは、有理数解を持たないことになります。
x,y,zが有理数解を、持たないならば、自然数解も、持ちません。
629132人目の素数さん
2019/10/23(水) 21:18:16.85ID:9K8zMWUB >飽きました。
フェルマーの最終定理は頭で考えてはならない。下半身、それもティムポで考えるのが
ベストである。勃起した状態であればさらに申し分ない。
フェルマーの最終定理は頭で考えてはならない。下半身、それもティムポで考えるのが
ベストである。勃起した状態であればさらに申し分ない。
630132人目の素数さん
2019/10/23(水) 21:20:01.03ID:9K8zMWUB631132人目の素数さん
2019/10/23(水) 21:22:00.82ID:K9Rmj4oV632132人目の素数さん
2019/10/23(水) 21:23:13.75ID:9K8zMWUB 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
⇔フェルマー
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
⇔日高
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
⇔鳩山由紀夫
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
⇔山本太郎
Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
⇔文在寅
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
⇔神戸市・市立東須磨小学校のヴァカ教師
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
⇔日高
⇔フェルマー
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
⇔日高
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
⇔鳩山由紀夫
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
⇔山本太郎
Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
⇔文在寅
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
⇔神戸市・市立東須磨小学校のヴァカ教師
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
⇔日高
633132人目の素数さん
2019/10/23(水) 21:29:32.03ID:9K8zMWUB >>450 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2019/10/16(水) 14:47:36.51 ID:Qy/AaUxg [16/16]
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
a^{1/(1-1)}は、特定できない数です。
634日高
2019/10/23(水) 21:42:00.77ID:39Tkzd0q >xを有理数,yを有理数としたとき、どうしてzが無理数となるの?
xを有理数,yを有理数としたとき、x^p+y^p=(x+p^{1/(p-1)})^pの左辺は、有理数、
右辺は無理数となるので、実際は、yは無理数となります。
右辺のxを有理数とすると、p^{1/(p-1)}が無理数なので、右辺は無理数となります。
右辺は、x+p^{1/(p-1)}=x+r=zとなります。
よって、zは、無理数となります。
xを有理数,yを有理数としたとき、x^p+y^p=(x+p^{1/(p-1)})^pの左辺は、有理数、
右辺は無理数となるので、実際は、yは無理数となります。
右辺のxを有理数とすると、p^{1/(p-1)}が無理数なので、右辺は無理数となります。
右辺は、x+p^{1/(p-1)}=x+r=zとなります。
よって、zは、無理数となります。
635132人目の素数さん
2019/10/23(水) 21:53:19.92ID:K9Rmj4oV636132人目の素数さん
2019/10/23(水) 22:07:22.39ID:G+j9Gw/C >>xを有理数,yを有理数としたとき、どうしてzが無理数となるの?
>xを有理数,yを有理数としたとき、x^p+y^p=(x+p^{1/(p-1)})^pの左辺は、有理数、
>右辺は無理数となるので、実際は、yは無理数となります。
頭悪いなあ。等式の左辺が有理数なら右辺が無理数になるわけがない。
xとyをともに有理数としたとき、x^p+y^p=(x+p^{1/(p-1)})^p にはなりえないと自身で証明してしまったのか。
頭悪いなあ。
>xを有理数,yを有理数としたとき、x^p+y^p=(x+p^{1/(p-1)})^pの左辺は、有理数、
>右辺は無理数となるので、実際は、yは無理数となります。
頭悪いなあ。等式の左辺が有理数なら右辺が無理数になるわけがない。
xとyをともに有理数としたとき、x^p+y^p=(x+p^{1/(p-1)})^p にはなりえないと自身で証明してしまったのか。
頭悪いなあ。
637132人目の素数さん
2019/10/24(木) 07:22:24.19ID:3QGERGJI また>>620を貼るのかな
638日高
2019/10/24(木) 09:48:22.55ID:5dm0G2pe >xを有理数,yを有理数としたとき、どうして実際はyは無理数となるの?
x^p+y^p=(x+p^{1/(p-1)})^pの左辺のx,yを有理数とすると、
左辺は有理数、右辺は無理数となるので、矛盾します。
yを無理数とすると、矛盾しません。
x^p+y^p=(x+p^{1/(p-1)})^pの左辺のx,yを有理数とすると、
左辺は有理数、右辺は無理数となるので、矛盾します。
yを無理数とすると、矛盾しません。
639日高
2019/10/24(木) 09:50:52.07ID:5dm0G2pe 定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
640132人目の素数さん
2019/10/24(木) 10:14:51.53ID:akZcbcNW そう言えば r^(p-1)=p の証明はできたの?
まだ使ってるけど
まだ使ってるけど
641日高
2019/10/24(木) 10:32:31.48ID:5dm0G2pe >r^(p-1)=p の証明はできたの?
どのように、証明すればよいのでしょうか?
どのように、証明すればよいのでしょうか?
642132人目の素数さん
2019/10/24(木) 10:36:56.18ID:akZcbcNW 普通の数学の証明をすればいいよ
643132人目の素数さん
2019/10/24(木) 10:42:22.35ID:1zg6XbCM r^(p-1)=pは、あなたが主張し始めたことですので、あなたが自力で証明してください。
ちなみに私は証明できません。反証ならできますが。
ちなみに私は証明できません。反証ならできますが。
644132人目の素数さん
2019/10/24(木) 12:08:23.09ID:8qtXEgPv645日高
2019/10/24(木) 12:48:45.09ID:5dm0G2pe >反証ならできますが。
お願いします。
お願いします。
646日高
2019/10/24(木) 12:59:05.94ID:5dm0G2pe >xを有理数,yを有理数としたとき、yは有理数なのに、どうしてyは無理数となるの?
x,yを有理数とすると、左辺は有理数、右辺は無理数となるからです。
x,yを有理数とすると、左辺は有理数、右辺は無理数となるからです。
647132人目の素数さん
2019/10/24(木) 13:01:36.13ID:TFjX0kgg 恒等式じゃないのかw
648132人目の素数さん
2019/10/24(木) 13:34:58.22ID:akZcbcNW 証明できない式の反証を求める姿勢は面白いね
649132人目の素数さん
2019/10/24(木) 13:36:06.62ID:8qtXEgPv650日高
2019/10/24(木) 13:54:03.73ID:5dm0G2pe >x,yを有理数とすると左辺は有理数右辺は無理数となるど、どうして、yは有理数でかつyは無理数となるの?
yを有理数とすると、両辺の値が等しくならないからです。
yを有理数とすると、両辺の値が等しくならないからです。
651132人目の素数さん
2019/10/24(木) 14:34:33.72ID:GqUa5hww 何度も指摘されていると思うが、まず
> 【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
> @をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
という文章が不明瞭。はっきりしているのは p が奇素数であるということだけで
x、y、z が何なのか不明である。したがって z=x+r とおいたときの r も正体不明
なのだから、数学の証明としての体をなしていない。
> 【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
> @をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
という文章が不明瞭。はっきりしているのは p が奇素数であるということだけで
x、y、z が何なのか不明である。したがって z=x+r とおいたときの r も正体不明
なのだから、数学の証明としての体をなしていない。
652132人目の素数さん
2019/10/24(木) 14:45:08.26ID:1zg6XbCM653132人目の素数さん
2019/10/24(木) 15:20:02.05ID:dbtv4RA7654日高
2019/10/24(木) 15:30:20.45ID:5dm0G2pe >z=x+r とおいたときの r も正体不明
なのだから、数学の証明としての体をなしていない。
zを有理数とすると、x,rは有理数となります。
zを無理数とすると、x,rは無理数、もしくはx,rどちらかが、無理数となります。
なのだから、数学の証明としての体をなしていない。
zを有理数とすると、x,rは有理数となります。
zを無理数とすると、x,rは無理数、もしくはx,rどちらかが、無理数となります。
655132人目の素数さん
2019/10/24(木) 15:34:23.93ID:dbtv4RA7 >>654
結局これは有理数解xyzをカテイシタ背理法なの?
結局これは有理数解xyzをカテイシタ背理法なの?
656132人目の素数さん
2019/10/24(木) 15:34:55.98ID:dbtv4RA7 変換ミスがひどい
657132人目の素数さん
2019/10/24(木) 16:52:29.82ID:8qtXEgPv658132人目の素数さん
2019/10/24(木) 17:20:12.59ID:GqUa5hww > zを無理数とすると、x,rは無理数、もしくはx,rどちらかが、無理数となります。
zを無理数と仮定すると
x^p + y^p = z^p ・・・・・@
を満たす有理数 x、y は無数に存在するのだから、証明は不要である。
> zを有理数とすると、x,rは有理数となります。
そうであれば
r^(p-1) = p
としたとき r はただちに実数になることがわかり、r が有理数であることと矛盾する。
zを無理数と仮定すると
x^p + y^p = z^p ・・・・・@
を満たす有理数 x、y は無数に存在するのだから、証明は不要である。
> zを有理数とすると、x,rは有理数となります。
そうであれば
r^(p-1) = p
としたとき r はただちに実数になることがわかり、r が有理数であることと矛盾する。
659日高
2019/10/24(木) 17:36:29.65ID:5dm0G2pe >r^(p-1)=p の証明はできたの?
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}ならば、
r^(p-1)=pのとき、{(y/r)^p-1}={x^(p-1)+…+r^(p-2)x}となります。
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}ならば、
r^(p-1)=pのとき、{(y/r)^p-1}={x^(p-1)+…+r^(p-2)x}となります。
660日高
2019/10/24(木) 17:39:00.41ID:5dm0G2pe >結局これは有理数解xyzをカテイシタ背理法なの?
背理法ではないと思います。
背理法ではないと思います。
661132人目の素数さん
2019/10/24(木) 17:46:37.73ID:u0D+3gQY662日高
2019/10/24(木) 17:48:56.46ID:5dm0G2pe >yを有理数とすると、どうして両辺の値が等しくならないの?
「正確には、」x^p+y^p=(x+p^{1/(p-1)})^pのx,yを有理数とすると、両辺の値が等しくなりません。
「正確には、」x^p+y^p=(x+p^{1/(p-1)})^pのx,yを有理数とすると、両辺の値が等しくなりません。
663日高
2019/10/24(木) 17:53:33.36ID:5dm0G2pe >すでに何度も言われてるが、r^(p-1)=p が成り立つときにどうかの話はしてない
なんでわからないのか
すみませんが、よくわかりません。質問の意味を詳しく教えていただけないでしょうか。
なんでわからないのか
すみませんが、よくわかりません。質問の意味を詳しく教えていただけないでしょうか。
664日高
2019/10/24(木) 18:06:17.97ID:5dm0G2pe > zを有理数とすると、x,rは有理数となります。
そうであれば
r^(p-1) = p
としたとき r はただちに実数になることがわかり、r が有理数であることと矛盾する。
x^p+y^p=(x+p^{1/(p-1)})^p
この場合のrは、無理数なので、xを有理数とすると、zは無理数となります。
そうであれば
r^(p-1) = p
としたとき r はただちに実数になることがわかり、r が有理数であることと矛盾する。
x^p+y^p=(x+p^{1/(p-1)})^p
この場合のrは、無理数なので、xを有理数とすると、zは無理数となります。
665132人目の素数さん
2019/10/24(木) 19:15:41.04ID:u0D+3gQY >>663
r^(p-1)=p を証明に使うならこれも証明しなければならないというだけの話が何故わからないのか?
r^(p-1)=p を証明に使うならこれも証明しなければならないというだけの話が何故わからないのか?
666132人目の素数さん
2019/10/24(木) 19:31:13.72ID:GqUa5hww 定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
数学の証明として意見を求めているのであれば、まずこの時点で、x、y、z が何なのか
仮定しなければならない。そうでなければ話にならない。
何度も繰り返すが x、y、z のどれか1つでも無理数であることを認めれば
x^p+y^p=z^p
は成り立つ。
x、y、z は本来自然数と仮定すべきだが、とりあえずは有理数でもよい。
x、y、z を有理数と仮定した場合 z = x + r とおいたとき r は必ず有理数となるのだから
以降の証明で
> この場合のrは、無理数なので
などというのはばかげている。
x、y、z が有理数ならばz = x + r
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
数学の証明として意見を求めているのであれば、まずこの時点で、x、y、z が何なのか
仮定しなければならない。そうでなければ話にならない。
何度も繰り返すが x、y、z のどれか1つでも無理数であることを認めれば
x^p+y^p=z^p
は成り立つ。
x、y、z は本来自然数と仮定すべきだが、とりあえずは有理数でもよい。
x、y、z を有理数と仮定した場合 z = x + r とおいたとき r は必ず有理数となるのだから
以降の証明で
> この場合のrは、無理数なので
などというのはばかげている。
x、y、z が有理数ならばz = x + r
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 中国国連大使「日本が中国に武力行使すると脅しをかけたのは初めて」 国連事務総長に書簡★2 [♪♪♪★]
- 【トレンド】高市首相「マウント取れる服」投稿にツッコミ続出「他国に対する敬意がない」「外交相手に失礼」 [1ゲットロボ★]
- 台湾有事での集団的自衛権行使に「賛成」が48.8%、「反対」が44.2% ★8 [♪♪♪★]
- 【🐼】パンダ、日本で会えなくなる? 中国との関係悪化で不安の声 [ぐれ★]
- 【芸能】44歳・池脇千鶴、激変ぶりにネット衝撃 「まるで別人…」「変化が凄い!!」の声 [冬月記者★]
- 【立憲民主党】「質問レベルの低さが立憲の存立危機事態」台湾有事発言を引き出した立憲“執拗追及”が波紋… ★2 [尺アジ★]
- 🏡😡
- 現役JKのお茶会スレ( ¨̮ )︎︎𖠚ᐝ161
- 【悲報】フィギュアスケート人気、めちゃくちゃ落ちる💥💥wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww [573041775]
- 【動画】インド人「プロの竹槍の使い方、見せたろか?」ジャップとの格の違いを見せつけられてしまう [689851879]
- 中国「国連さん聞いて!日本が反省しないの!日本は武力介入しようとしてるよ!」
- 【悲報】引きこもりニートからの脱出、マジで難しい
