r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
r^(p-1)=pとおくと、r=p^{1/(p-1)}となるので、
{(y/r)^p-1}={x^(p-1)+…+r^(p-2)x}に代入して、
両辺にx^pを加えると、
x^p+y^p=(x+p^{1/(p-1)})^pを、展開した形と同じ形となる。

もしくは、
r^(p-1)=A, p=B, {(y/r)^p-1}=C, {x^(p-1)+…+r^(p-2)x}=Dとおく。
AB=CDならば、A=Cのとき、B=Dとなる。