>【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
>【証明】z=x+rとおくと、x^p+y^p=(x+r)^p…(1)となる。
 x、y、z、r はオ〇〇コなのか有理数なのかさっぱりわからない。
 数学の証明では文字式を使うときはそれが何かを宣言しなければならない。
なにしろ x、y、z が実数なら(1)は成り立つ。x、y、z のうちどれか1つでも
実数なら(1)は成り立つ。

 また x、y、z が実数であろうと自然数であろうと
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)
から
> r^(p-1)=p
と断定できない。このことを再三再四指摘されているにもかかわらず、屁理屈
ばかりこね回し、いっこうに修正されていないので後の証明は価値なし。ま、
それより前もまったく価値はないがwwwwwwwwwwwwwwwwww