フェルマーの最終定理の簡単な証明

■ このスレッドは過去ログ倉庫に格納されています
1日高
垢版 |
2019/09/23(月) 09:33:36.12ID:HXbAy1I+
pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
x^p+y^p=z^pをz=x+rとおいて、x^p+y^p=(x+r)^pとする。
r=p^{1/(p-1)}となるので、x^p+y^p=(x+p^{1/(p-1)})^p=z^pとなる。
xを有理数とすると、zは無理数となる。
∴x^p+y^p=z^pは自然数解を持たない。
2019/09/23(月) 09:50:21.96ID:VWfXQ97t
ファルマーの冒険って小説なかったっけ?
3日高
垢版 |
2019/09/23(月) 10:22:04.56ID:HXbAy1I+
どこか、
おかしいところが、あるでしょうか?
2019/09/23(月) 10:52:20.95ID:VWfXQ97t
>r=p^{1/(p-1)}となるので
なんで?
5日高
垢版 |
2019/09/23(月) 12:05:14.99ID:HXbAy1I+
x^p+y^p=(x+r)^pの両辺をr^pで割る。
(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+...+x/r},
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x},
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
■ このスレッドは過去ログ倉庫に格納されています
5ちゃんねるの広告が気に入らない場合は、こちらをクリックしてください。

ニューススポーツなんでも実況