pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
x^p+y^p=z^pをz=x+rとおいて、x^p+y^p=(x+r)^pとする。
r=p^{1/(p-1)}となるので、x^p+y^p=(x+p^{1/(p-1)})^p=z^pとなる。
xを有理数とすると、zは無理数となる。
∴x^p+y^p=z^pは自然数解を持たない。
フェルマーの最終定理の簡単な証明
■ このスレッドは過去ログ倉庫に格納されています
1日高
2019/09/23(月) 09:33:36.12ID:HXbAy1I+2019/09/23(月) 09:50:21.96ID:VWfXQ97t
ファルマーの冒険って小説なかったっけ?
3日高
2019/09/23(月) 10:22:04.56ID:HXbAy1I+ どこか、
おかしいところが、あるでしょうか?
おかしいところが、あるでしょうか?
2019/09/23(月) 10:52:20.95ID:VWfXQ97t
>r=p^{1/(p-1)}となるので
なんで?
なんで?
5日高
2019/09/23(月) 12:05:14.99ID:HXbAy1I+ x^p+y^p=(x+r)^pの両辺をr^pで割る。
(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+...+x/r},
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x},
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+...+x/r},
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x},
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
2019/09/23(月) 12:46:00.20ID:MpXoKD+u
(y/r)^p-1=p{(x/r)^(p-1)+...+x/r},
はなぜですか?
はなぜですか?
7日高
2019/09/23(月) 13:24:40.70ID:HXbAy1I+ わかりやすく、p=3の場合で計算します。
(y/r)^3-1=3{(x/r)^2+x/r}, r^2{(y/r)^3-1}=3(x^2+rx),
r^2=3とすると、r=3^(1/2)となります。
(y/r)^3-1=3{(x/r)^2+x/r}, r^2{(y/r)^3-1}=3(x^2+rx),
r^2=3とすると、r=3^(1/2)となります。
2019/09/23(月) 15:08:16.60ID:MpXoKD+u
p=4の時はどうなりますか?
9日高
2019/09/23(月) 15:22:43.21ID:HXbAy1I+ r=4^(1/3)となります。
2019/09/23(月) 15:25:39.37ID:MpXoKD+u
(y/r)^p-1=p{(x/r)^(p-1)+...+x/r},
この計算をp=4の場合にもしていただきたいです
この計算をp=4の場合にもしていただきたいです
11日高
2019/09/23(月) 16:49:51.72ID:HXbAy1I+ p=4は、奇素数ではないので、p=5でやります。
(y/r)^5-1=5{(x/r)^(5-1)+...+x/r},
r^(5-1){(y/r)^5-1}=5(x^(5-1)+...+r^(5-2)x},
r^(5-1)=5とすると、r=5^{1/(5-1)}となります。
(y/r)^5-1=5{(x/r)^(5-1)+...+x/r},
r^(5-1){(y/r)^5-1}=5(x^(5-1)+...+r^(5-2)x},
r^(5-1)=5とすると、r=5^{1/(5-1)}となります。
12132人目の素数さん
2019/09/23(月) 16:53:14.21ID:MpXoKD+u (x+y)^5計算してみてください
そのあと、x=y=1としてみてください
そのあと、x=y=1としてみてください
13日高
2019/09/23(月) 17:28:26.90ID:HXbAy1I+ (x+y)^5=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5,
=1+5+10+10+5+1
=32
となります。
=1+5+10+10+5+1
=32
となります。
14132人目の素数さん
2019/09/25(水) 01:23:26.97ID:AhdwTfQA >>5
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x},
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
ここが理解できない。
r^(p-1)=pとなぜ仮定しちゃってるんですか??
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x}
の左辺は有理数×有理数という形になっているので、掛け合わしてる数のいずれかは素数の倍数になるという整数の性質は使えないと思うのですが。
違う論法なんですかね。
ちょっと解説を。
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x},
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
ここが理解できない。
r^(p-1)=pとなぜ仮定しちゃってるんですか??
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x}
の左辺は有理数×有理数という形になっているので、掛け合わしてる数のいずれかは素数の倍数になるという整数の性質は使えないと思うのですが。
違う論法なんですかね。
ちょっと解説を。
15日高
2019/09/25(水) 06:19:18.74ID:rZG/71Kx 言われていることの意味は、例えば、
(4/3)*6=2*4という事でしょうか?
(4/3)*6=2*4という事でしょうか?
16132人目の素数さん
2019/09/25(水) 21:41:41.34ID:rZG/71Kx 「r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x}
の左辺は有理数×有理数という形になっているので」
左辺は有理数×有理数とは限りません。
の左辺は有理数×有理数という形になっているので」
左辺は有理数×有理数とは限りません。
17132人目の素数さん
2019/09/25(水) 22:45:33.47ID:AhdwTfQA18日高
2019/09/26(木) 05:39:30.95ID:vy72PMPb 「でも自然数×自然数であることの証明はできないわけで。」
これは、どの部分を指しているのでしょうか?
これは、どの部分を指しているのでしょうか?
19132人目の素数さん
2019/09/26(木) 05:49:46.28ID:oCwPZdEB r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x},
の左辺のことです。
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
というところがよく分かってなくて。
自分なりの解釈として、左辺が自然数×自然数であることを前提に、どちらかは素数の倍数である。ということからr^(p-1)=pとおいたのかなと見ていたのですが、この解釈は違う感じですかね。
の左辺のことです。
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
というところがよく分かってなくて。
自分なりの解釈として、左辺が自然数×自然数であることを前提に、どちらかは素数の倍数である。ということからr^(p-1)=pとおいたのかなと見ていたのですが、この解釈は違う感じですかね。
20日高
2019/09/26(木) 05:57:52.61ID:vy72PMPb r^(p-1){(y/r)^p-1}=p{x^(p-1)+...+r^(p-2)x},
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
「ここが理解できない。
r^(p-1)=pとなぜ仮定しちゃってるんですか??」
例えば、
AB=CDならば、A=Cとすると、B=Dとなるからです。
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
「ここが理解できない。
r^(p-1)=pとなぜ仮定しちゃってるんですか??」
例えば、
AB=CDならば、A=Cとすると、B=Dとなるからです。
21132人目の素数さん
2019/09/26(木) 06:12:37.00ID:oCwPZdEB >>20
レスありがとうございます。
何を前提として仮定として置いているのかとすると
(y/r)^p-1=x^(p-1)+...+r^(p-2)x
と仮定してr^(p-1)=pを導いているのか、それとも逆なのか?どちらでしょうか?
レスありがとうございます。
何を前提として仮定として置いているのかとすると
(y/r)^p-1=x^(p-1)+...+r^(p-2)x
と仮定してr^(p-1)=pを導いているのか、それとも逆なのか?どちらでしょうか?
22日高
2019/09/26(木) 06:56:04.89ID:vy72PMPb r^(p-1)=pとすると、
(y/r)^p-1=x^(p-1)+...+r^(p-2)x
となります。
(y/r)^p-1=x^(p-1)+...+r^(p-2)x
となります。
23日高
2019/09/26(木) 08:54:19.14ID:vy72PMPb 逆もいえます。
r^(p-1){(y/r)^p-1}=p{x^(p-1)+...+r^(p-2)x},
ならば、
{(y/r)^p-1}={x^(p-1)+...+r^(p-2)x}
のとき、
r^(p-1)=pとなります。
r^(p-1){(y/r)^p-1}=p{x^(p-1)+...+r^(p-2)x},
ならば、
{(y/r)^p-1}={x^(p-1)+...+r^(p-2)x}
のとき、
r^(p-1)=pとなります。
24日高
2019/09/26(木) 09:08:00.78ID:vy72PMPb 分かりにくいと思いますので、
p=2を代入して、試してみてください。
p=2を代入して、試してみてください。
25132人目の素数さん
2019/09/26(木) 12:18:41.11ID:oCwPZdEB AB=CDの証明として。
A=Cとすると、B=Dである。
またB=Dとすると、A=Cである。
故にAB=CDとなる。
みたいな話をしようとしてます?
この場合、A=CかB=Dを示さないと証明になってないですよね。そこを聞いてるんですけど。。。
A=Cとすると、B=Dである。
またB=Dとすると、A=Cである。
故にAB=CDとなる。
みたいな話をしようとしてます?
この場合、A=CかB=Dを示さないと証明になってないですよね。そこを聞いてるんですけど。。。
26日高
2019/09/26(木) 12:48:10.26ID:vy72PMPb AB=CDなので、
A=Cとすると、B=Dとなる。
です。
A=Cとすると、B=Dとなる。
です。
27132人目の素数さん
2019/09/26(木) 12:49:44.12ID:sJrIfg0n28132人目の素数さん
2019/09/26(木) 12:51:40.10ID:VZwwP/KT > A=Cとすると、B=Dとなる。
A≠Cのときは?
A≠Cのときは?
29132人目の素数さん
2019/09/26(木) 12:53:36.63ID:sJrIfg0n あと揚げ足取りになるかもですが。
AB=CDの証明なのに
AB=CDだからA=C
というのも論理的には成り立っていないですよ。
どんなに考えても、この論法は
有理数×有理数を自然数×自然数と錯覚して証明につなげたようにしか思えません。
それ自体は数学ではしょっちゅうある話ですけど。
AB=CDの証明なのに
AB=CDだからA=C
というのも論理的には成り立っていないですよ。
どんなに考えても、この論法は
有理数×有理数を自然数×自然数と錯覚して証明につなげたようにしか思えません。
それ自体は数学ではしょっちゅうある話ですけど。
30日高
2019/09/26(木) 13:07:52.77ID:vy72PMPb p=2の場合
r^(p-1)=pは、
r^(2-1)=2となります。
x^2+y^2=(x+2)^2,
x=3, y=4, z=x+2=5
となります。
r^(p-1)=pは、
r^(2-1)=2となります。
x^2+y^2=(x+2)^2,
x=3, y=4, z=x+2=5
となります。
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 【芸能】『バンダイナムコフェス』上海公演 日本人歌手・大槻マキが歌唱中に強制退場… 急に音を止められスタッフらしき人達に [冬月記者★]
- 「怒りに震えて涙が出た」 同性婚認めず「合憲」判断に原告が反発 「差別的な判決だ」 [ぐれ★]
- 橋下徹氏 高市首相“台湾有事”発言に「政治家の失言で一部の人でも仕事がキャンセルに…我々は認めていいのかな」疑問呈す [muffin★]
- 「インバウンド政策上、中国は重要」、訪日自粛で金子国交相「早く通常の状況に戻っていただきたい」★2 [ぐれ★]
- 中国外務省「正式な発言撤回なければ受け入れず」 高市首相は台湾有事「存立危機事態」言及せずも「言及しないことと撤回は別問題」★5 [ぐれ★]
- Amazonブラックフライデー 活況の裏に過酷労働 事故やケガを「自己責任にしないで」配達員ら4年連続抗議 [蚤の市★]
- (*´ω`*)おはようドリーム
- 🇯🇵天皇陛下に万歳しながら鳥居くぐったりよじのぼったりしてる
- おい千晴😡
- 中華房 麻辣燙 ってやつ急にあちこち置いてあるな
- デリヘル呼んだら私かわいいからプレミア料金ですって言ってた
- じゃ…先に寝るから
