>>461,462

うーーん。なかなか難しいね。ww
これならどうか。

==========================
説明その1
==========================

p → q を背理法で証明するばあい、
p と ¬q を仮定して、矛盾を示す。
矛盾を示すには、
q を示してもよいが、¬p を示しても良い。
これは、 qが偽であると p → q が真になることの説明にならないかな?

==========================
説明その2
==========================

次の事実が正当化できるのではないかな?

定理 : p → qがあったとする。
pより弱い条件の p' を使って、
定理 : p → q よりも強い
定理 : p' → q が証明されたとする。
それでも最初の定理が正しいことに変わりはない。
これは、OKかな?

例えば、
定理1「ξが超越数ならば、 |p/q - ξ| < 1/q^2 となる有理数p/qは無限個存在する」
という定理が証明されたとする。
その後、
定理2「ξが無理数である必要十分条件は、 |p/q - ξ| < 1/q^2 となる有理数p/qは無限個存在する」
という定理が証明された時、
「ξが超越数でない」のにディオファントス近似が成り立つケースが存在することがわかる。
それでも、定理1は正しい。