>>799
つづき

3)
さらに、Hart氏は、PDFで(>>26より)
”P2
Remark. When the number of boxes is finite Player 1 can guarantee a win
with probability 1 in game1, and with probability 9/10 in game2, by choosing
the xi independently and uniformly on [0, 1] and {0, 1, ・・・, 9}, respectively.”
とあって、boxes を”the xi independently and uniformly”として
確率変数で扱っている。(finiteもinfiniteも、同様に扱えることは、確率過程論を読めば分かる)

4)
時枝が、記事の中で、箱を確率変数の族として扱っていることは、
上記数学DR Tony Huynh氏の関連引用示した通りです

5)
なお、mathoverflowでは、
数学DR Pruss先生と、数学DR Tony Huynh氏が、箱を確率変数として扱うことについて
異議を唱える者なし〜!!(^^

6)
分かってますよ、あなたたちは、もう逃げ道はそこしかないと
分かってますよ、あなたたちが、確率変数に無知なこと
分かってますよ、「君子豹変」と「イヌコロ」さんが、確率変数について、>>33-34の論争で、どちらが無知か、無知比べw(^^

確率変数の定義と説明は、下記渡辺澄夫先生 東工大が分り易い
分かるまで、100回でも200回でも、音読しましょう〜!w
>>35より)
http://watanabe-www.math.dis.titech.ac.jp/users/swatanab/intro_prob_theory.pdf
確率論入門 渡辺澄夫 東工大 2018
(抜粋)
P8-10 確率変数
(引用終わり)
以上