X



現代数学の系譜 工学物理雑談 古典ガロア理論も読む53

■ このスレッドは過去ログ倉庫に格納されています
1現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2018/09/19(水) 22:33:01.69ID:YdWOD6VC
“現代数学の系譜 物理工学雑談 古典ガロア理論も読む”

数学セミナー時枝記事は、過去スレ39 で終わりました。
39は、別名「数学セミナー時枝記事の墓」と名付けます。

皆さまのご尽力で、伝統あるガロアすれは、
過去、数学板での勢いランキングで、常に上位です。(勢い1位の時も多い(^^ )

このスレは、現代数学のもとになった物理工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで良ければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^
最近、AIと数学の関係が気になって、その関係の記事を集めています〜(^^
いま、大学数学科卒でコンピュータサイエンスもできる人が、求められていると思うんですよね。

話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。
“時枝記事成立”を支持する立場からのカキコや質問は、基本はスルーします。それはコピペで流します。気が向いたら、忘れたころに取り上げます。

なお、
小学レベルとバカプロ固定
サイコパスのピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」)
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
High level people
低脳幼稚園児のAAお絵かき
お断り!
小学生がいますので、18金よろしくね!(^^

High level people は自分達で勝手に立てたスレ28へどうぞ!sage進行推奨(^^;
また、スレ43は、私が立てたスレではないので、私は行きません。そこでは、私はスレ主では無くなりますからね。このスレに不満な人は、そちらへ。 http://rio2016.2ch.net/test/read.cgi/math/1506152332/
旧スレが512KBオーバー(又は間近)で、新スレ立てる
(スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。)
2018/10/21(日) 10:29:42.25ID:PDyPLXa6
この一致の定理に対して、スレ主の>>428の真似をすると、
たとえば次のようなアナロジーが得られる。長いので2レスに分ける。
―――――――――――――――――――――――――――――――――――――――――
証明以前に論理の問題として考えよう。
一致の定理では、正則関数 f:C→C について、C−C_f が第A類集合でありさえすれば、
だったそれだけで必ず、fは恒等的に0であると主張している。

だったら、C−C_f={0}∪{i/n|n∈N} のケースを考えよう。

・ {0}∪{i/n|n∈N} は第A類集合だから、C−C_f は第A類集合である。

よって、一致の定理の条件節を満たすので、一致の定理が適用できて、fは恒等的に0になる。
しかし、fの零点集合は C−C_f であり、C−C_f={0}∪{i/n|n∈N} なのだから、
fの零点集合は {0}∪{i/n|n∈N} ということになる。だったら、そこ以外の点では
f(z)≠0である。つまり、このケースでは、f は恒等的に0ではない!

[続く]
2018/10/21(日) 10:32:50.04ID:PDyPLXa6
つまり、

3)「p → q」 集合の包含関係 P⊂Q を踏まえて
・ 一致の定理において、
 f:R → R は正則関数とする
 条件節 A:C−C_f が第A類集合ならば
 結論 B:f は恒等的に0である
 となる
・ここで、簡単に条件節 Aを満たす正則関数の集合をA、結論 Bを満たす正則関数の集合をBとする
 A⊂B である
(対偶とは、単純に”¬A ⊃ ¬B”のことである)
・¬B:”fは恒等的に0ではない”
 であるから
 そのような正則関数は、¬Aに含まれる(Aではない)
・よって、そのような正則関数は、一致の定理で扱ってはいけない
(∵条件節 Aを満たさない正則関数は、一致の定理の範囲外。
 無理に扱えば、上記1)のバートランド・ラッセルの逸話になる)

C−C_f={0}∪{i/n|n∈N} のケースでは、fは恒等的に0ではないのだから、このような正則関数は
¬Bに含まれる。よって、そのような正則関数は¬Aに含まれる。¬Aに含まれる正則関数は、
一致の定理で扱ってはいけないのだったが、C−C_f={0}∪{i/n|n∈N} は第A類集合なのだから、
条件節Aを満たしており、一致の定理で扱える。つまり、C−C_f={0}∪{i/n|n∈N} のケースでは、
"一致の定理で扱ってはいけないのに一致の定理で扱える"。ということは、一致の定理は間違っている!!
―――――――――――――――――――――――――――――――――――――――――
■ このスレッドは過去ログ倉庫に格納されています
5ちゃんねるの広告が気に入らない場合は、こちらをクリックしてください。

ニューススポーツなんでも実況