探検
モンティホールの問題で絶対選び直す奴www [無断転載禁止]©2ch.net
■ このスレッドは過去ログ倉庫に格納されています
1132人目の素数さん
2017/08/25(金) 14:37:30.24ID:S098vEOR コイントスで表が出たら次に出るのは絶対に裏を選択するんだな?
376132人目の素数さん
2018/06/13(水) 20:26:25.40ID:UVCpnaBf377132人目の素数さん
2018/06/13(水) 20:28:42.26ID:6/WvAubx >>376
>『誰が』ゲームを行っているかは不明である
不明ではない。明らかに、ゲームの参加者である1万人の人間がゲームを行っている。
> これでは1人の人間に起きる確率がわからない
君の屁理屈によれば、「あなたの人生においては1回限りだから50%である」なんだろ?
>『誰が』ゲームを行っているかは不明である
不明ではない。明らかに、ゲームの参加者である1万人の人間がゲームを行っている。
> これでは1人の人間に起きる確率がわからない
君の屁理屈によれば、「あなたの人生においては1回限りだから50%である」なんだろ?
378132人目の素数さん
2018/06/13(水) 20:31:40.58ID:UVCpnaBf だから説得力がないと判断するのは誰?
379132人目の素数さん
2018/06/13(水) 20:36:29.72ID:6/WvAubx >>378
説得力がないと判断するのは、ゲームに参加した1万人。
たとえば、ゲームを終えた1万人の人間が再び集まって、
その中の何人が当たりを引いたのかをカウントしてみればよい。
このとき、1万人の中でたった1人しか当たってないことが分かる。もし
「あなたの人生においては1回限りだから50%である」
ならば、当たった人数はだいたい半分くらいカウントされて、、
外れた人数もだいたい半分くらいカウントされなければ、参加者にとって納得がいくわけがない。
説得力がないと判断するのは、ゲームに参加した1万人。
たとえば、ゲームを終えた1万人の人間が再び集まって、
その中の何人が当たりを引いたのかをカウントしてみればよい。
このとき、1万人の中でたった1人しか当たってないことが分かる。もし
「あなたの人生においては1回限りだから50%である」
ならば、当たった人数はだいたい半分くらいカウントされて、、
外れた人数もだいたい半分くらいカウントされなければ、参加者にとって納得がいくわけがない。
380132人目の素数さん
2018/06/13(水) 20:44:26.64ID:UVCpnaBf 確率50%には『当たり』か『ハズレ』の内どちらかである
という意味もあるから矛盾していない
という意味もあるから矛盾していない
381132人目の素数さん
2018/06/13(水) 20:47:56.01ID:6/WvAubx382132人目の素数さん
2018/06/13(水) 20:51:33.72ID:UVCpnaBf 誰も納得していなくても確率50%は
何の問題もなく存在できます
何の問題もなく存在できます
383132人目の素数さん
2018/06/13(水) 20:58:19.51ID:6/WvAubx あるいは、次のように言ってもよい。君が言うところの「確率50%」を、
>確率50%には『当たり』か『ハズレ』の内どちらかである
このような くだらない意味に置き換えると、
「あなたの人生においては1回限りだから50%である」
という文章は
「あなたの人生においては1回限りだから、当たりかハズレの内どちらかである」
という意味になる。しかし、今は「当たり」と「ハズレ」しかないゲームをやっているのだから、
このゲームが1回限りでなくても、「当たりかハズレの内どちらかである」という事実は
常に言えてしまうのである。となれば、
「このゲームは1回限りだから、当たりかハズレの内どちらかである」
という言い方はナンセンスである。何回やったって、当たりかハズレの内どちらかだろw
「1回限りだから」という制約が無用の長物になってるじゃないか。
>確率50%には『当たり』か『ハズレ』の内どちらかである
このような くだらない意味に置き換えると、
「あなたの人生においては1回限りだから50%である」
という文章は
「あなたの人生においては1回限りだから、当たりかハズレの内どちらかである」
という意味になる。しかし、今は「当たり」と「ハズレ」しかないゲームをやっているのだから、
このゲームが1回限りでなくても、「当たりかハズレの内どちらかである」という事実は
常に言えてしまうのである。となれば、
「このゲームは1回限りだから、当たりかハズレの内どちらかである」
という言い方はナンセンスである。何回やったって、当たりかハズレの内どちらかだろw
「1回限りだから」という制約が無用の長物になってるじゃないか。
384132人目の素数さん
2018/06/13(水) 21:04:19.94ID:UVCpnaBf ゲームの回数が多数回(N→∞)の時はちゃんと
期待値が出てくるだろ
期待値が出てくるだろ
385132人目の素数さん
2018/06/13(水) 21:04:50.61ID:6/WvAubx >>382
誰も納得しない「確率50%」は、たとえ言葉の定義として矛盾がなくても、
「誰も納得しない」
という意味において大きな問題を抱えている。少なくとも俺は、
君が書いている意味での「確率50%」なんて使わないな。
誰も納得しない「確率50%」は、たとえ言葉の定義として矛盾がなくても、
「誰も納得しない」
という意味において大きな問題を抱えている。少なくとも俺は、
君が書いている意味での「確率50%」なんて使わないな。
386132人目の素数さん
2018/06/13(水) 21:07:14.37ID:UVCpnaBf 私の考えを打ち砕くには
『一回限りの出来事は確率50%になる』の
確率50%にならないことを示せばよいのです(´・ω・`)
『一回限りの出来事は確率50%になる』の
確率50%にならないことを示せばよいのです(´・ω・`)
387132人目の素数さん
2018/06/13(水) 21:10:17.03ID:6/WvAubx >>384
何で多数回の話が出てくるんだ?今は「1回しかゲームをしない」ときの話だよ?
で、参加者は納得しないと言ってるんだよ?
確率50%と言われたのに、1万人の中で1人しか当たってないんだから。
君はそこで
>確率50%には『当たり』か『ハズレ』の内どちらかである
と言い出したわけだ。しかし、この場合、君が言うところの
「あなたの人生においては1回限りだから50%である」
という文章は
「あなたの人生においては1回限りだから、当たりかハズレの内どちらかである」
という意味になる。だが、1回に限らず、何回やっても「当たり」か「ハズレ」のうちどちらなんだから、
「何回やったって、当たりかハズレの内どちらかだろw 1回限りという制約はどうしたんだよw 」
ということになり、これでは君が「1回限り」に拘った理由がどこにもなくなる。
つまり、君のやっていることはナンセンス。
何で多数回の話が出てくるんだ?今は「1回しかゲームをしない」ときの話だよ?
で、参加者は納得しないと言ってるんだよ?
確率50%と言われたのに、1万人の中で1人しか当たってないんだから。
君はそこで
>確率50%には『当たり』か『ハズレ』の内どちらかである
と言い出したわけだ。しかし、この場合、君が言うところの
「あなたの人生においては1回限りだから50%である」
という文章は
「あなたの人生においては1回限りだから、当たりかハズレの内どちらかである」
という意味になる。だが、1回に限らず、何回やっても「当たり」か「ハズレ」のうちどちらなんだから、
「何回やったって、当たりかハズレの内どちらかだろw 1回限りという制約はどうしたんだよw 」
ということになり、これでは君が「1回限り」に拘った理由がどこにもなくなる。
つまり、君のやっていることはナンセンス。
388132人目の素数さん
2018/06/13(水) 21:15:18.92ID:UVCpnaBf389132人目の素数さん
2018/06/13(水) 21:16:17.35ID:6/WvAubx >>386
君が言うところの「確率50%」が
・『当たり』か『ハズレ』の内どちらかである
という くだらない定義なのであれば、
「何回やっても当たりかハズレのうちどちらかである」
という正しい文章に「確率50%」という言葉を代入することで
「何回やっても確率50%である」
という文章が完成する。
君の言葉の定義によれば、この文章は論理的には矛盾しておらず、"正しい" 文章である。
しかし、君はこの文章に 納 得 し な い だろう。しかし、
「誰も納得しなくても、論理的に矛盾してなければそれでいい」という立場を君は取っている。
なら、これからは君は自信をもって、
「何回やっても確率50%である」
と宣言しまくればいい。
君が言うところの「確率50%」が
・『当たり』か『ハズレ』の内どちらかである
という くだらない定義なのであれば、
「何回やっても当たりかハズレのうちどちらかである」
という正しい文章に「確率50%」という言葉を代入することで
「何回やっても確率50%である」
という文章が完成する。
君の言葉の定義によれば、この文章は論理的には矛盾しておらず、"正しい" 文章である。
しかし、君はこの文章に 納 得 し な い だろう。しかし、
「誰も納得しなくても、論理的に矛盾してなければそれでいい」という立場を君は取っている。
なら、これからは君は自信をもって、
「何回やっても確率50%である」
と宣言しまくればいい。
390132人目の素数さん
2018/06/14(木) 15:03:21.88ID:QSAJ3OW0 よく読み返してみたら、ID:UVCpnaBf は
>『当たりとハズレどちらも同じくらい出る』(>>363)
と言ってるな。つまり、>363 では「確率50%」のことを
>『当たりとハズレどちらも同じくらい出る』
という常識的な定義で使っている。一方で、>>366 に対しては、その定義だと都合が悪いので
>確率50%には『当たり』か『ハズレ』の内どちらかである(>>380)
と別の定義に差し替えて使っている。ダブルスタンダードもいいとこだな。
で、>380 の定義の場合、>>389 で指摘したように
「何回やっても確率50%である」
という文章が論理的に矛盾せず "正しい" 文章になってしまうので、
定義を差し替えたところで ID:UVCpnaBf は逃げきれない。
つまり、どちらに転んでも、ID:UVCpnaBf の言ってることはナンセンスである。
>『当たりとハズレどちらも同じくらい出る』(>>363)
と言ってるな。つまり、>363 では「確率50%」のことを
>『当たりとハズレどちらも同じくらい出る』
という常識的な定義で使っている。一方で、>>366 に対しては、その定義だと都合が悪いので
>確率50%には『当たり』か『ハズレ』の内どちらかである(>>380)
と別の定義に差し替えて使っている。ダブルスタンダードもいいとこだな。
で、>380 の定義の場合、>>389 で指摘したように
「何回やっても確率50%である」
という文章が論理的に矛盾せず "正しい" 文章になってしまうので、
定義を差し替えたところで ID:UVCpnaBf は逃げきれない。
つまり、どちらに転んでも、ID:UVCpnaBf の言ってることはナンセンスである。
391132人目の素数さん
2018/06/14(木) 15:09:30.12ID:QSAJ3OW0392132人目の素数さん
2018/06/14(木) 18:52:07.58ID:oOI8Ggvu ■ゲームを1回に限定すると
1.最初プレーヤーがあたりを引く確率は1/2である
2.ドアを変更しない場合はそのまま1/2の確率である
(変更しないのであればモンティがドアを開こうが開くまいが確率は変わらない)
3.モンティがドアを開けた後にドアを変更する場合、
最初に選択したドアがハズレであれば変更後のドアはあたりが確定である
つまり、最初に選択したドアがはずれである確率=ドアを変更した場合に
あたりを引く確率である
4.最初の選択であたりを引く確率は1/2、はずれを引く確率も1/2である
5.ゆえに、ドアを変更した場合のあたりを引く確率は1/2である
1.最初プレーヤーがあたりを引く確率は1/2である
2.ドアを変更しない場合はそのまま1/2の確率である
(変更しないのであればモンティがドアを開こうが開くまいが確率は変わらない)
3.モンティがドアを開けた後にドアを変更する場合、
最初に選択したドアがハズレであれば変更後のドアはあたりが確定である
つまり、最初に選択したドアがはずれである確率=ドアを変更した場合に
あたりを引く確率である
4.最初の選択であたりを引く確率は1/2、はずれを引く確率も1/2である
5.ゆえに、ドアを変更した場合のあたりを引く確率は1/2である
393132人目の素数さん
2018/06/14(木) 22:12:25.78ID:oOI8Ggvu □■(ステイ or チェンジ)…事象C
ゲームが多数回(N→∞)の時の事象Cの確率 P(C|N)
事象Cの尤度関数P(N|C)=2(確率が二倍になる)
事象Cの主観確率P(C)=1/2
∵ベイズの定理より
P(C|N)=P(C) * P(N|C)=1/2 * 2=1(事象Dに一致)
『ステイのハズレの確率はチェンジの
当たりの確率に等しい』…事象D
事象Dの確率 P(D)=1
ゲームが多数回(N→∞)の時の事象Cの確率 P(C|N)
事象Cの尤度関数P(N|C)=2(確率が二倍になる)
事象Cの主観確率P(C)=1/2
∵ベイズの定理より
P(C|N)=P(C) * P(N|C)=1/2 * 2=1(事象Dに一致)
『ステイのハズレの確率はチェンジの
当たりの確率に等しい』…事象D
事象Dの確率 P(D)=1
394132人目の素数さん
2018/06/14(木) 23:36:49.62ID:oOI8Ggvu □■(ステイ or チェンジ)…事象C
ゲームの回数N<3の時…事象n
ゲームの回数N<3の時の事象Cの確率 P(C|n)
事象Cの尤度関数P(n|C)=1(確率はそのまま)
事象Cの主観確率P(C)=1/2
∵ベイズの定理より
P(C|n)=P(C) * P(n|C)=1/2 * 1=1/2
ゲームが一回と二回の時は
『当たりとハズレどちらも同じくらい出る』
と判断するのが良い
ゆえに、ゲームの回数をN<3にすると
当たりの確率は50%になると予想できます
ゲームの回数N<3の時…事象n
ゲームの回数N<3の時の事象Cの確率 P(C|n)
事象Cの尤度関数P(n|C)=1(確率はそのまま)
事象Cの主観確率P(C)=1/2
∵ベイズの定理より
P(C|n)=P(C) * P(n|C)=1/2 * 1=1/2
ゲームが一回と二回の時は
『当たりとハズレどちらも同じくらい出る』
と判断するのが良い
ゆえに、ゲームの回数をN<3にすると
当たりの確率は50%になると予想できます
395132人目の素数さん
2018/06/15(金) 20:30:07.55ID:/O+rtJfr ■Let's Make a Deal -- Big Deal of the Day (Monty Hall)
https://www.youtube.com/watch?v=T5QYTrDReTo
https://www.youtube.com/watch?v=T5QYTrDReTo
396132人目の素数さん
2018/06/15(金) 20:38:14.23ID:/O+rtJfr ゲームが一回と二回の時に限り
直感で正しいと思える解答と、
論理的に正しい解答が一致する
直感で正しいと思える解答と、
論理的に正しい解答が一致する
397132人目の素数さん
2018/06/15(金) 21:18:08.60ID:XIWWc9UG >>395
なうゲッタチャンスそっくり
なうゲッタチャンスそっくり
398132人目の素数さん
2018/06/16(土) 01:07:10.72ID:V/5gh5dv こんなスロースピードでゲームやっていたら
1人のプレーヤーにチャンスは一回だろ
1人のプレーヤーにチャンスは一回だろ
399132人目の素数さん
2018/06/17(日) 15:49:44.64ID:NhlP5nbz 確率は脳内で起こってるんじゃない
現場で起きてるんだ!
現場で起きてるんだ!
400132人目の素数さん
2018/06/17(日) 15:50:24.32ID:NhlP5nbz 【事象】
観察しうる形をとって現れる事柄、できごと
ここでの事象とは自然界の事象という意味で
確率論の事象ではない
観察しうる形をとって現れる事柄、できごと
ここでの事象とは自然界の事象という意味で
確率論の事象ではない
401132人目の素数さん
2018/06/18(月) 01:34:02.06ID:1r6d8wmy ■ゲームが一回と二回の時の確率を求める
ゲームの回数N<3の時…事象n
プレイヤーのファーストチョイス時の当たりの確率…事象A
モンティがハズレのドアを一枚開ける…事象B
□■(ステイ or チェンジ)…排反事象C
『ステイのハズレの確率はチェンジの
当たりの確率に等しい』…事象D
プレイヤーがチェンジした時の当たりの確率…事象E
モンティがハズレのドアを一枚開ける事によって
引き起こされる事象…事象F
事象Aの主観確率 P(A)=1/3
事象Bの確率 P(B)=1(モンティは無条件にハズレのドアを一枚開ける)
排反事象Cの主観確率 P(C)=1/2
排反事象Cの尤度関数 P(n|C)=1(確率はそのまま)
排反事象Cの確率 P(C|n)=P(C) * P(n|C)=1/2 * 1=1/2
事象Dの確率 P(D)=1
事象Eの主観確率 P(E)=2/3
事象Fの確率 P(F|n)=P(B|n) * P(C|n) * P(D|n)=1/2
∵ベイズの定理より
P(A+E|n)={{P(A)+P(E)} * P(n|A+E)} * P(F|n)
={{1/3+2/3} * 1} * (1/2)
=1/2(直観確率と一致)
ゲームが一回と二回の時に限り
直感で正しいと思える解答と、
論理的に正しい解答が一致する
ゲームの回数N<3の時…事象n
プレイヤーのファーストチョイス時の当たりの確率…事象A
モンティがハズレのドアを一枚開ける…事象B
□■(ステイ or チェンジ)…排反事象C
『ステイのハズレの確率はチェンジの
当たりの確率に等しい』…事象D
プレイヤーがチェンジした時の当たりの確率…事象E
モンティがハズレのドアを一枚開ける事によって
引き起こされる事象…事象F
事象Aの主観確率 P(A)=1/3
事象Bの確率 P(B)=1(モンティは無条件にハズレのドアを一枚開ける)
排反事象Cの主観確率 P(C)=1/2
排反事象Cの尤度関数 P(n|C)=1(確率はそのまま)
排反事象Cの確率 P(C|n)=P(C) * P(n|C)=1/2 * 1=1/2
事象Dの確率 P(D)=1
事象Eの主観確率 P(E)=2/3
事象Fの確率 P(F|n)=P(B|n) * P(C|n) * P(D|n)=1/2
∵ベイズの定理より
P(A+E|n)={{P(A)+P(E)} * P(n|A+E)} * P(F|n)
={{1/3+2/3} * 1} * (1/2)
=1/2(直観確率と一致)
ゲームが一回と二回の時に限り
直感で正しいと思える解答と、
論理的に正しい解答が一致する
402式修正
2018/06/18(月) 17:36:02.28ID:1r6d8wmy P(A∪E|n)={{P(A)+P(E)} * P(n|A∪E)} * P(F|n)
={{1/3+2/3} * 1} * (1/2)
=1/2(直観確率と一致)
(P(A∩E)=0)とき、
事象AとEは、互いに排反
={{1/3+2/3} * 1} * (1/2)
=1/2(直観確率と一致)
(P(A∩E)=0)とき、
事象AとEは、互いに排反
403別式
2018/06/19(火) 16:23:03.06ID:eN0ZLm1Z P(F|n)=fとおく
P(A∪E|f)={P(A)+P(E)} * P(f|A∪E)
={1/3+2/3} * 1/2
=1/2(直観確率と一致)
(P(A∩E)=0)とき、
事象AとEは、互いに排反
P(A∪E|f)={P(A)+P(E)} * P(f|A∪E)
={1/3+2/3} * 1/2
=1/2(直観確率と一致)
(P(A∩E)=0)とき、
事象AとEは、互いに排反
404別式2
2018/06/19(火) 22:14:14.41ID:eN0ZLm1Z 事象Aの尤度関数P(n|A)=3/2
事象Eの尤度関数P(n|E)=3/4
と考えられるので、
事象Fの確率 P(F|n)=P(B|n) * P(C|n) * P(D|n)
=P(n|E)/P(n|A)=1/2
P(A∪E|n)={{P(A)+P(E)} * P(n|A∪E)} * {P(n|E)/P(n|A)}
={{1/3+2/3} * 1} * {(3/4)/(3/2)}
=1/2(直観確率と一致)
(P(A∩E)=0)とき、
事象AとEは、互いに排反
事象Eの尤度関数P(n|E)=3/4
と考えられるので、
事象Fの確率 P(F|n)=P(B|n) * P(C|n) * P(D|n)
=P(n|E)/P(n|A)=1/2
P(A∪E|n)={{P(A)+P(E)} * P(n|A∪E)} * {P(n|E)/P(n|A)}
={{1/3+2/3} * 1} * {(3/4)/(3/2)}
=1/2(直観確率と一致)
(P(A∩E)=0)とき、
事象AとEは、互いに排反
405132人目の素数さん
2018/06/19(火) 22:16:43.07ID:eN0ZLm1Z P(n|A)=a
P(n|E)=e
P(F|n)=fとおくと
a=e/f
e=af
f=e/a
P(n|E)=e
P(F|n)=fとおくと
a=e/f
e=af
f=e/a
406132人目の素数さん
2018/06/20(水) 18:38:42.99ID:XnvbCFgr ■事象Aの尤度関数P(n|A)について
ゲームの回数がN<3の時の事象Aの確率 P(A|n)
プレイヤーのファーストチョイス時の当たりの確率…事象A
事象Aの尤度関数P(n|A)=3/2
事象Aの主観確率 P(A)=1/3
P(n|A)=aとおくと
ゲームの回数がN<3であるからaのとる値は
1<a<2の範囲になる可能性が高い
a=1ならP(A|n)=1/3
a=3/2ならP(A|n)=1/2
a=2ならP(A|n)=2/3(この場合チェンジする必要はない)
a=3ならP(A|n)=1(完全な予知能力)
ゲームの回数がN<3の時の事象Aの確率 P(A|n)
プレイヤーのファーストチョイス時の当たりの確率…事象A
事象Aの尤度関数P(n|A)=3/2
事象Aの主観確率 P(A)=1/3
P(n|A)=aとおくと
ゲームの回数がN<3であるからaのとる値は
1<a<2の範囲になる可能性が高い
a=1ならP(A|n)=1/3
a=3/2ならP(A|n)=1/2
a=2ならP(A|n)=2/3(この場合チェンジする必要はない)
a=3ならP(A|n)=1(完全な予知能力)
407132人目の素数さん
2018/06/24(日) 18:52:33.21ID:SQiZ/Stc ■突風モンティ
ドアの枚数 N枚
ステイで当たる確率 1/N
チェンジで当たる確率 (N−1)/N
突風が開ける枚数 N−2
ステイで当たりを引いて
ゲームが成立する確率 (N−1)/N
チェンジで当たりになって
ゲームが成立する確率 1/N
ステイとチェンジで当たる確率はともに
(1/N)×{(N−1)/N}=(N−1)/N^2
ドアの枚数 N枚
ステイで当たる確率 1/N
チェンジで当たる確率 (N−1)/N
突風が開ける枚数 N−2
ステイで当たりを引いて
ゲームが成立する確率 (N−1)/N
チェンジで当たりになって
ゲームが成立する確率 1/N
ステイとチェンジで当たる確率はともに
(1/N)×{(N−1)/N}=(N−1)/N^2
408132人目の素数さん
2018/06/24(日) 20:53:26.90ID:SQiZ/Stc ゲームが成立する確率 2(N−1)/N^2
ゲームが不成立の確率 {(N−1)^2+1}/N^2
ゲームが不成立の確率 {(N−1)^2+1}/N^2
409132人目の素数さん
2018/06/25(月) 15:15:06.99ID:1S6E/T4G 69,463
410132人目の素数さん
2018/06/25(月) 18:30:14.27ID:1S6E/T4G もとの例題ではルール (3) と (4) が重要とされるのが一般的だが、
実はもう一つ重要な前提がある
それは、「プレーヤーが最初に当たりを選んだ場合に、
モンティが残るドアのどちらを開けるかについて
"癖がない(ランダムに選ぶ)" ことだ
例えば「プレーヤーが最初に当たりのドアAを選んだ場合は、
モンティは必ずBを開く」という可能性があるとすれば、
「マリリンの解答は間違っている」というのは必ずしも間違いではない
ここで、「癖がない(ランダムに選ぶ)」ことがいかに重要であるか、
具体的に説明する
プレーヤーがドアAを選んだ場合にモンティがドアBを選択する
(選択して開ける)確率を x とすると、ドアBが開いた
(もちろん外れ)という条件のもとで、ドアAが当たりである
確率は x/(1+x)となる(もちろん、ドアCが当たりである確率は
1/(1+x)である)
実はもう一つ重要な前提がある
それは、「プレーヤーが最初に当たりを選んだ場合に、
モンティが残るドアのどちらを開けるかについて
"癖がない(ランダムに選ぶ)" ことだ
例えば「プレーヤーが最初に当たりのドアAを選んだ場合は、
モンティは必ずBを開く」という可能性があるとすれば、
「マリリンの解答は間違っている」というのは必ずしも間違いではない
ここで、「癖がない(ランダムに選ぶ)」ことがいかに重要であるか、
具体的に説明する
プレーヤーがドアAを選んだ場合にモンティがドアBを選択する
(選択して開ける)確率を x とすると、ドアBが開いた
(もちろん外れ)という条件のもとで、ドアAが当たりである
確率は x/(1+x)となる(もちろん、ドアCが当たりである確率は
1/(1+x)である)
411132人目の素数さん
2018/06/25(月) 21:37:59.67ID:1S6E/T4G 回答者が当たりの扉を選んでいる場合は、
残りの扉からランダムに1つを選んで開けるとするという条件は、
頻度確率では何の意味も持たないことに留意すべきである
もっとも、ベイズ確率の計算においても、
理由不十分の原理を適用すれば、
「Aが当たりである場合に司会者が Bを開ける確率P(B | A) 」を
1/2とすることに合理性がある
残りの扉からランダムに1つを選んで開けるとするという条件は、
頻度確率では何の意味も持たないことに留意すべきである
もっとも、ベイズ確率の計算においても、
理由不十分の原理を適用すれば、
「Aが当たりである場合に司会者が Bを開ける確率P(B | A) 」を
1/2とすることに合理性がある
412132人目の素数さん
2018/06/25(月) 21:52:04.56ID:1S6E/T4G 「Aが当たりである場合に司会者が Bを開ける確率P(B|A) 」
P(B|A)=P(B) * P(A|B)
P(A|B)=1/3
P(B)=1/2
P(B|A)=1/6
P(B|A)=P(B) * P(A|B)
P(A|B)=1/3
P(B)=1/2
P(B|A)=1/6
413132人目の素数さん
2018/06/25(月) 22:46:57.38ID:pAprNDoD 前もどっかで書いたけど、単に
司会の扉がハズレの時の、はじめの扉がアタリの確率、残った扉がアタリの確率
を求めるだけなら司会の癖の記述は不要で
癖(確率xの値)が何であれ、確率はそれぞれ1/3、2/3と計算できるから
癖の記述は他の条件と比べるとそれほど重要じゃない
司会の扉がハズレの時の、はじめの扉がアタリの確率、残った扉がアタリの確率
を求めるだけなら司会の癖の記述は不要で
癖(確率xの値)が何であれ、確率はそれぞれ1/3、2/3と計算できるから
癖の記述は他の条件と比べるとそれほど重要じゃない
414132人目の素数さん
2018/06/25(月) 23:28:09.93ID:L1yARLEy 挑戦者が常に扉をチェンジする戦略をとった場合
ゲームを反復した総合成績で見ると
司会者が開けるハズレ扉の選び方の影響がなくなるらしい
Gill, Richard (2011).
ゲームを反復した総合成績で見ると
司会者が開けるハズレ扉の選び方の影響がなくなるらしい
Gill, Richard (2011).
415132人目の素数さん
2018/06/25(月) 23:35:33.40ID:1S6E/T4G P(B)=bとおく
0≦b≦1
ドアAが当たりである確率 b/(1+b)
ドアCが当たりである確率 1/(1+b)
P(A)=aとおく
0≦a≦1/2
P(A|B)=b/(1+b)
P(C|B)=1/(1+b)
ドアB、Cをランダムに(b=1/2の確率で)選択した
ときに限って、ドアAが当たりの確率は1/3のまま
ドアCが当たりの確率は当初の1/3から2/3に上がる
0≦b≦1
ドアAが当たりである確率 b/(1+b)
ドアCが当たりである確率 1/(1+b)
P(A)=aとおく
0≦a≦1/2
P(A|B)=b/(1+b)
P(C|B)=1/(1+b)
ドアB、Cをランダムに(b=1/2の確率で)選択した
ときに限って、ドアAが当たりの確率は1/3のまま
ドアCが当たりの確率は当初の1/3から2/3に上がる
416132人目の素数さん
2018/06/25(月) 23:41:39.00ID:1S6E/T4G417132人目の素数さん
2018/06/25(月) 23:49:38.87ID:1S6E/T4G (3) モンティは残りのドアのうち1つを必ず開ける
(4) モンティの開けるドアは、必ずヤギの入っているドアである
(3) と(4) は一つにできる
『モンティは残りのドアのうちヤギの入っているドア1つを開ける』
(4) モンティの開けるドアは、必ずヤギの入っているドアである
(3) と(4) は一つにできる
『モンティは残りのドアのうちヤギの入っているドア1つを開ける』
418132人目の素数さん
2018/06/25(月) 23:52:05.76ID:pAprNDoD プレイヤーが扉Aを選んで、司会が扉Bを選んでハズレの時の、扉Aがアタリの確率、扉Cがアタリの確率
と
司会が選んだ扉がハズレの時の、プレイヤーが選んだ扉がアタリの確率、残った扉がアタリの確率
では意味が違う(各事象が異なってる)
というだけだよ
前者のような具体的状況の確率を計算するには癖の情報が必要(ハズレの選び方によって値が変わる)だけど
後者のような抽象的状況(戦略)の確率を計算するには、癖の情報は不要(ハズレの選び方に依らず、値は変わらない)となる
と
司会が選んだ扉がハズレの時の、プレイヤーが選んだ扉がアタリの確率、残った扉がアタリの確率
では意味が違う(各事象が異なってる)
というだけだよ
前者のような具体的状況の確率を計算するには癖の情報が必要(ハズレの選び方によって値が変わる)だけど
後者のような抽象的状況(戦略)の確率を計算するには、癖の情報は不要(ハズレの選び方に依らず、値は変わらない)となる
419132人目の素数さん
2018/06/27(水) 00:42:53.39ID:4Hhy671s モンティはハズレのドアを一つゲームから除外するので
ハズレのドアが二枚残ることはない
■■…空事象
プレイヤーは最後に当たりとハズレのドアのうち
一つを開ける二択を必ず行う
□■(ステイ or チェンジ)…排反事象
1□■
2■□
3■□
4□■
5■□
6■□←当たりとハズレが見事に入れかわる
:
:
N■□←チェンジすると当たりの確率が2倍
↑
ファーストチョイス時の当たりの確率P(A)=1/3
ステイのハズレの確率はチェンジの当たりの確率に
等しいので、チェンジし続ける(Changing)なら
当たる確率が二倍になるといえる
ハズレのドアが二枚残ることはない
■■…空事象
プレイヤーは最後に当たりとハズレのドアのうち
一つを開ける二択を必ず行う
□■(ステイ or チェンジ)…排反事象
1□■
2■□
3■□
4□■
5■□
6■□←当たりとハズレが見事に入れかわる
:
:
N■□←チェンジすると当たりの確率が2倍
↑
ファーストチョイス時の当たりの確率P(A)=1/3
ステイのハズレの確率はチェンジの当たりの確率に
等しいので、チェンジし続ける(Changing)なら
当たる確率が二倍になるといえる
420132人目の素数さん
2018/06/27(水) 18:35:13.44ID:4Hhy671s 69,494
421132人目の素数さん
2018/07/01(日) 02:59:42.03ID:5lhsH83j □当たり ■ハズレ
A B
□|■■
■|□■
■|■□
□|■■
■|□■
■|■□
□|■■
■|□■
■|■□
↑
最初に当たりを引く確率は1/3
B
■
■
■
■
■
■
■
■
■
↑
モンティはただひたすらハズレのみ
確率1でチョイス
A B
□|■
■|□
■|□
□|■
■|□
■|□
□|■
■|□
■|□
↑
チェンジで当たりを引く確率は2/3
A B
□|■■
■|□■
■|■□
□|■■
■|□■
■|■□
□|■■
■|□■
■|■□
↑
最初に当たりを引く確率は1/3
B
■
■
■
■
■
■
■
■
■
↑
モンティはただひたすらハズレのみ
確率1でチョイス
A B
□|■
■|□
■|□
□|■
■|□
■|□
□|■
■|□
■|□
↑
チェンジで当たりを引く確率は2/3
422132人目の素数さん
2018/07/02(月) 18:10:30.31ID:4L3Px6mw □当たり ■ハズレ
A B
□|■■
□|■■
■|■□
□|■■
□|■■
■|□■
□|■■
□|■■
■|■□
↑
予知能力で最初に当たりを引く確率を
2/3にできる
A B
□|■■
□|■■
■|■□
□|■■
□|■■
■|□■
□|■■
□|■■
■|■□
↑
予知能力で最初に当たりを引く確率を
2/3にできる
423132人目の素数さん
2018/07/02(月) 20:19:52.01ID:4L3Px6mw シミュレータを使うと試行回数5回くらいだと
チェンジの正解率100%から20%まで幅が生じる
試行回数1回だと2/3くらいの確率で
100%、1/3くらいの確率で0%になる
試行回数を30回くらいにするとチェンジ後の正解率が
50%以下になることはまずなくなる
4万か5万くらいから10万回くらいの試行回数で
66%から67%くらいの間にほぼ収束しますね
20回の試行回数だとまだチェンジ後の正解率が
5割を下回ることがある
チェンジの正解率100%から20%まで幅が生じる
試行回数1回だと2/3くらいの確率で
100%、1/3くらいの確率で0%になる
試行回数を30回くらいにするとチェンジ後の正解率が
50%以下になることはまずなくなる
4万か5万くらいから10万回くらいの試行回数で
66%から67%くらいの間にほぼ収束しますね
20回の試行回数だとまだチェンジ後の正解率が
5割を下回ることがある
424132人目の素数さん
2018/07/03(火) 20:09:49.47ID:w+9agJ7g □当たり ■ハズレ
A B
□|■■
□|■■
□|■■
■|■□
□|■■
□|■■
□|■■
■|□■
↑
予知能力で最初に当たりを引く確率を
3/4にすることも可能
A B
□|■■
□|■■
□|■■
■|■□
□|■■
□|■■
□|■■
■|□■
↑
予知能力で最初に当たりを引く確率を
3/4にすることも可能
425132人目の素数さん
2018/07/05(木) 18:12:30.95ID:xoa++giO もんちい(*´▽`*)
426132人目の素数さん
2018/07/05(木) 23:13:43.31ID:xoa++giO ■1〜3のドアの内のどれかに当たりがある確率
ドアの大きさはすべて同じで
起こり得る場合の数がn通りあり、
どの場合も起こるのが同様に確からしいとする
ある事象Aの場合の数がr通りであるとき,
事象Aの起こる確率をp=r/nと定義する
(ラプラス流の確率の定義)
事象Aの場合の数/起こり得るすべての場合の数
ゲームを二回だけ行って
起こり得る根元事象全体は
(1回目のゲームで最初に選択したドアがi、
2回目のゲームで最初に選択したドアがjのとき(i,j)と書くと)
Ω={(i,j)|1≦i≦3,1≦j≦3}
#A=3x3−2x2=9−4=5なのでAの起こる確率p=5/9
#Aは事象Aに含まれる要素の個数
ゲームが二回だけの時は
最初に当たりを引く確率が1/2をやや上回る
ドアの大きさはすべて同じで
起こり得る場合の数がn通りあり、
どの場合も起こるのが同様に確からしいとする
ある事象Aの場合の数がr通りであるとき,
事象Aの起こる確率をp=r/nと定義する
(ラプラス流の確率の定義)
事象Aの場合の数/起こり得るすべての場合の数
ゲームを二回だけ行って
起こり得る根元事象全体は
(1回目のゲームで最初に選択したドアがi、
2回目のゲームで最初に選択したドアがjのとき(i,j)と書くと)
Ω={(i,j)|1≦i≦3,1≦j≦3}
#A=3x3−2x2=9−4=5なのでAの起こる確率p=5/9
#Aは事象Aに含まれる要素の個数
ゲームが二回だけの時は
最初に当たりを引く確率が1/2をやや上回る
427132人目の素数さん
2018/07/06(金) 00:19:44.90ID:sS/VgUe5 ゲームを一回だけ行って
起こり得る根元事象全体は
(ゲームで最初に選択したドアがi、
ゲームで2回目に選択したドアがjのとき(i,j)と書くと)
Ω={(i,j)|1≦i≦3,1≦j≦2}
#A=3x2−2x1=6−2=4なのでAの起こる確率p=2/3
#Aは事象Aに含まれる要素の個数
ゲームが一回だけの時は
ステイでもチェンジでも当たりを引く確率が2/3になる
ステイ or チェンジを含めてゲームを二回行うと
Aの起こる確率p=(2/3)^2=4/9
1/2をやや下回る
起こり得る根元事象全体は
(ゲームで最初に選択したドアがi、
ゲームで2回目に選択したドアがjのとき(i,j)と書くと)
Ω={(i,j)|1≦i≦3,1≦j≦2}
#A=3x2−2x1=6−2=4なのでAの起こる確率p=2/3
#Aは事象Aに含まれる要素の個数
ゲームが一回だけの時は
ステイでもチェンジでも当たりを引く確率が2/3になる
ステイ or チェンジを含めてゲームを二回行うと
Aの起こる確率p=(2/3)^2=4/9
1/2をやや下回る
428132人目の素数さん
2018/07/06(金) 02:44:53.25ID:sS/VgUe5 ゲームをn回行って少なくとも一回の当たりを引く確率は
p=(3^n−2^n)/3^n
n=10なら
p=(59049−1024)/59049≒0.98265847008
p=(3^n−2^n)/3^n
n=10なら
p=(59049−1024)/59049≒0.98265847008
429132人目の素数さん
2018/07/06(金) 02:55:31.71ID:sS/VgUe5 ■ドアが100枚だとどうなる?
ゲームを一回だけ行って
起こり得る根元事象全体は
(ゲームで最初に選択したドアがi、
ゲームで2回目に選択したドアがjのとき(i,j)と書くと)
Ω={(i,j)|1≦i≦100,1≦j≦2}
#A=100x2−99x1=200−99=101なので
Aの起こる確率p=101/200≒1/2
#Aは事象Aに含まれる要素の個数
ドアが100枚でゲームが一回だけの時は
ステイでもチェンジでも当たりを引く確率が1/2になる
ゲームを一回だけ行って
起こり得る根元事象全体は
(ゲームで最初に選択したドアがi、
ゲームで2回目に選択したドアがjのとき(i,j)と書くと)
Ω={(i,j)|1≦i≦100,1≦j≦2}
#A=100x2−99x1=200−99=101なので
Aの起こる確率p=101/200≒1/2
#Aは事象Aに含まれる要素の個数
ドアが100枚でゲームが一回だけの時は
ステイでもチェンジでも当たりを引く確率が1/2になる
430132人目の素数さん
2018/07/07(土) 17:23:38.54ID:97ymtDhj ,,__,,
/ `、
/ ヽ
/ ● ● |
/l ''''' し '''''' |
/ l __. |
l /ヽ_ ` --' _ノ
\  ̄ ヽ∩
⌒l l三 |
| ヽ.__|
/ `、
/ ヽ
/ ● ● |
/l ''''' し '''''' |
/ l __. |
l /ヽ_ ` --' _ノ
\  ̄ ヽ∩
⌒l l三 |
| ヽ.__|
431132人目の素数さん
2018/07/07(土) 17:25:25.91ID:97ymtDhj ■ゲームが一回でドアがn枚で当りを引く確率
n→∞に向かうと
P(A)=(n+1)/2n
nが奇数の時は
P(A)={(n+1)/2}/n
ドアが3枚 P(A)=2/3
ドアが4枚 P(A)=5/8
ドアが5枚 P(A)=3/5
ドアが6枚 P(A)=7/12
ドアが7枚 P(A)=4/7
n→∞に向かうと
P(A)=(n+1)/2n
nが奇数の時は
P(A)={(n+1)/2}/n
ドアが3枚 P(A)=2/3
ドアが4枚 P(A)=5/8
ドアが5枚 P(A)=3/5
ドアが6枚 P(A)=7/12
ドアが7枚 P(A)=4/7
432132人目の素数さん
2018/07/07(土) 17:41:02.02ID:97ymtDhj 期待値μであるような
独立同時分布確率変数列X1、X2…の算術平均
[Xn]={X1+X2+…+Xn}/n
のとる値は、十分大きなnまで考えれば、
ほとんどのnでおおよそμである
[Xn]がμから大きく外れるようなnの現れる確率は
nを無限に大きくすると0に近づく
lim[Xn]=μ in probability
n→∞
ゲームが一回でドアを無限に増やした時の
プレイヤーが当たりを引く期待値は
μ≒1/2
独立同時分布確率変数列X1、X2…の算術平均
[Xn]={X1+X2+…+Xn}/n
のとる値は、十分大きなnまで考えれば、
ほとんどのnでおおよそμである
[Xn]がμから大きく外れるようなnの現れる確率は
nを無限に大きくすると0に近づく
lim[Xn]=μ in probability
n→∞
ゲームが一回でドアを無限に増やした時の
プレイヤーが当たりを引く期待値は
μ≒1/2
433132人目の素数さん
2018/07/07(土) 18:54:08.31ID:97ymtDhj 3枚のドアがある
□□ ■■ ■■
□□ ■■ ■■
□□ ■■ ■■
モンティチョイス
□□ ■■
□□ ■■
□□ ■■
当たりの確率が1/2世界線へシフト
■□ □■
□■ ■□
■□ □■
□□ ■■ ■■
□□ ■■ ■■
□□ ■■ ■■
モンティチョイス
□□ ■■
□□ ■■
□□ ■■
当たりの確率が1/2世界線へシフト
■□ □■
□■ ■□
■□ □■
434132人目の素数さん
2018/07/08(日) 00:51:38.55ID:HgR4bllt 支離滅裂
期待値μのゲームをn回繰り返し行うときに言える話(大数の法則)と
扉を増やすことで別のゲームを考えることとは全く関係がない
関係ないのに同じnやμなどの記号を用いるのは
非常に悪意があるか、または、単に物凄くお馬鹿か
のどちらかである
期待値μのゲームをn回繰り返し行うときに言える話(大数の法則)と
扉を増やすことで別のゲームを考えることとは全く関係がない
関係ないのに同じnやμなどの記号を用いるのは
非常に悪意があるか、または、単に物凄くお馬鹿か
のどちらかである
435132人目の素数さん
2018/07/08(日) 01:12:36.87ID:51qo+fM3 世界線が変化する
□□ ■□ ■■
■□ ■■ ■□
□■ ■■ ■■
■■ ■□ □■
■■ □■ ■□
■■ ■□ □■
□□ ■□ ■■
■□ ■■ ■□
□■ ■■ ■■
■■ ■□ □■
■■ □■ ■□
■■ ■□ □■
436132人目の素数さん
2018/07/08(日) 01:18:44.97ID:51qo+fM3437132人目の素数さん
2018/07/08(日) 01:28:56.05ID:51qo+fM3 ■ドアが三枚
ゲームを三回行って起こり得る根元事象全体は
(1回目のゲームで最初に選択したドアがi、
2回目のゲームで最初に選択したドアがj、
3回目のゲームで最初に選択したドアがkのとき(i,j,k)と書くと)
Ω={(i,j,k)|1≦i≦3,1≦j≦3,1≦k≦3}
#A=3x3x3−2x2x2=27−8=19なのでAの起こる確率p=19/27
#Aは事象Aに含まれる要素の個数
ゲームが三回だけの時は
最初に当たりを引く確率が2/3をやや上回る
ゲームをn回行って少なくとも一回の当たりを引く確率は
p=(3^n−2^n)/3^n
ゲームを三回行って起こり得る根元事象全体は
(1回目のゲームで最初に選択したドアがi、
2回目のゲームで最初に選択したドアがj、
3回目のゲームで最初に選択したドアがkのとき(i,j,k)と書くと)
Ω={(i,j,k)|1≦i≦3,1≦j≦3,1≦k≦3}
#A=3x3x3−2x2x2=27−8=19なのでAの起こる確率p=19/27
#Aは事象Aに含まれる要素の個数
ゲームが三回だけの時は
最初に当たりを引く確率が2/3をやや上回る
ゲームをn回行って少なくとも一回の当たりを引く確率は
p=(3^n−2^n)/3^n
438132人目の素数さん
2018/07/08(日) 02:54:31.94ID:51qo+fM3 実際に>>431の数値を入力して計算してみる
期待値μ=3/5
n=5
[Xn]={X1+X2+…+Xn}/n
={2/3+5/8+3/5+7/12+4/7}/5
=3.04642857143/5
=0.60928571428≒3/5
見事に収束する
期待値μ=3/5
n=5
[Xn]={X1+X2+…+Xn}/n
={2/3+5/8+3/5+7/12+4/7}/5
=3.04642857143/5
=0.60928571428≒3/5
見事に収束する
439132人目の素数さん
2018/07/08(日) 04:30:11.22ID:mpOJjX7n 久々に来てみたけどまだ勉強していないみたいだな
440132人目の素数さん
2018/07/08(日) 18:56:18.18ID:51qo+fM3 ■モンティが介在しないドアが一枚と二枚を含めて行う
ドアが1枚 P(A)=1
ドアが2枚 P(A)=3/4
期待値μ=5/8=0.625
n=7
[Xn]={X1+X2+…+X7}/n
={1+3/4+2/3+5/8+3/5+7/12+4/7}/7
=4.79642857143/7
=0.68520408163
モンティがいないと期待値
μ=0.625と比べてやや高い値をとる
[Xn]/μ=1.09632653061
ドアが1枚 P(A)=1
ドアが2枚 P(A)=3/4
期待値μ=5/8=0.625
n=7
[Xn]={X1+X2+…+X7}/n
={1+3/4+2/3+5/8+3/5+7/12+4/7}/7
=4.79642857143/7
=0.68520408163
モンティがいないと期待値
μ=0.625と比べてやや高い値をとる
[Xn]/μ=1.09632653061
441132人目の素数さん
2018/07/08(日) 19:20:45.95ID:51qo+fM3 ■ゲームは一回限定で1bitΔΣ変調を行う
最初の3枚のドア(1fs)に
64倍オーバーサンプリング(64fs)をかけて
192枚のドアを擬似的に作り出す
1bit量子化器は分解能が2値(0と1)
↓
これがステイorチェンジに対応する
P(A)=193/384
=0.50260416666
≒1/2
擬似的に作り出された192枚のドアには
64個の当たりがノイズ成分として擬似的に生成される
もちろん、本物の当たりは一つだけ
最初の3枚のドア(1fs)に
64倍オーバーサンプリング(64fs)をかけて
192枚のドアを擬似的に作り出す
1bit量子化器は分解能が2値(0と1)
↓
これがステイorチェンジに対応する
P(A)=193/384
=0.50260416666
≒1/2
擬似的に作り出された192枚のドアには
64個の当たりがノイズ成分として擬似的に生成される
もちろん、本物の当たりは一つだけ
442132人目の素数さん
2018/07/10(火) 16:36:07.74ID:Wq07W7Fz ■ゲームは一回限定で1bitΔΣ変調を行う
最初の3枚のドア(1fs)に
256倍オーバーサンプリング(256fs)をかけて
768枚のドアを擬似的に作り出す
1bit量子化器は分解能が2値(0と1)
↓
これがステイorチェンジに対応する
P(A)=769/1536
=0.50065104166
≒1/2
擬似的に作り出された768枚のドアには
256個の当たりがノイズ成分として擬似的に生成される
もちろん、本物の当たりは一つだけ
最初の3枚のドア(1fs)に
256倍オーバーサンプリング(256fs)をかけて
768枚のドアを擬似的に作り出す
1bit量子化器は分解能が2値(0と1)
↓
これがステイorチェンジに対応する
P(A)=769/1536
=0.50065104166
≒1/2
擬似的に作り出された768枚のドアには
256個の当たりがノイズ成分として擬似的に生成される
もちろん、本物の当たりは一つだけ
443132人目の素数さん
2018/07/10(火) 16:52:14.26ID:Wq07W7Fz ■ドアが二枚の時のモンティの介在方法
プレイヤーのファーストチョイス
□□ ■■
□□ ■■
□□ ■■ P(A)=1/2
モンティはプレイヤーが当たりを引いていても
ハズレのドアは開けずにセカンドチョイスを問う
□□ ■■
□□ ■■
□□ ■■ P(A)=1/2
プレイヤーが最初にハズレを引いている時は
最初からドアを開けられないので
モンティはステイorチェンジのみを問う
Ω={(i,j)|1≦i≦2,1≦j≦2}
#A=2x2−1x1=4−1=3なので
Aの起こる確率p=3/4
#Aは事象Aに含まれる要素の個数
ドアが二枚の時は当たりの確率P(A)=3/4
プレイヤーのファーストチョイス
□□ ■■
□□ ■■
□□ ■■ P(A)=1/2
モンティはプレイヤーが当たりを引いていても
ハズレのドアは開けずにセカンドチョイスを問う
□□ ■■
□□ ■■
□□ ■■ P(A)=1/2
プレイヤーが最初にハズレを引いている時は
最初からドアを開けられないので
モンティはステイorチェンジのみを問う
Ω={(i,j)|1≦i≦2,1≦j≦2}
#A=2x2−1x1=4−1=3なので
Aの起こる確率p=3/4
#Aは事象Aに含まれる要素の個数
ドアが二枚の時は当たりの確率P(A)=3/4
444132人目の素数さん
2018/07/11(水) 01:02:03.52ID:ZP0RF+pw445132人目の素数さん
2018/07/11(水) 17:25:19.47ID:ZP0RF+pw >>431の分散を求める
n=5
μ=3/5
n
V[X]=1/nΣ(Xi−μ)^2
i=1
=1/5(0.004444+0.000625+0.000277+0.000816)
=0.0012324
n=5
μ=3/5
n
V[X]=1/nΣ(Xi−μ)^2
i=1
=1/5(0.004444+0.000625+0.000277+0.000816)
=0.0012324
446132人目の素数さん
2018/07/11(水) 19:14:31.78ID:ZP0RF+pw 二次のモーメントを使う
n=5
μ=3/5
V[X]=E[X^2]−μ^2
={(2/3)^2+(5/8)^2+(3/5)^2+(7/12)^2+(4/7)^2}/5−μ^2
={(4/9+25/64+9/25+49/144+16/49)/5}−9/25
=0.37237556689−0.36
=0.01237556689
n=5
μ=3/5
V[X]=E[X^2]−μ^2
={(2/3)^2+(5/8)^2+(3/5)^2+(7/12)^2+(4/7)^2}/5−μ^2
={(4/9+25/64+9/25+49/144+16/49)/5}−9/25
=0.37237556689−0.36
=0.01237556689
447132人目の素数さん
2018/07/11(水) 19:17:28.01ID:ZP0RF+pw どちらも小数点以下で分散が小さい
→平均 μ に近いデータが多い
→散らばり極小
→平均 μ に近いデータが多い
→散らばり極小
448132人目の素数さん
2018/07/13(金) 18:02:54.82ID:02AA9UOt Ω={当たり,ハズレ,ハズレ}とおくとき,
F={φ,Ω,{当たり,ハズレ},{ハズレ,ハズレ}}は,
σ 集合族である.
F={φ,Ω,{当たり,ハズレ},{ハズレ,ハズレ}}は,
σ 集合族である.
449132人目の素数さん
2018/07/13(金) 21:21:14.36ID:02AA9UOt プレイヤーのファーストチョイス
□□ ■■ ■■
□□ ■■ ■■
□□ ■■ ■■ P(A)=1/3
ステイorチェンジ
□□ ■■
■■ □□
■■ □□ P(A)=2/3
Ω={(i,j)|1≦i≦3,1≦j≦2}
#A=3x2−2x1=6−2=4なので
Aの起こる確率p=4/6=2/3
#Aは事象Aに含まれる要素の個数
ドアが三枚の時は当たりの確率P(A)=2/3
□□ ■■ ■■
□□ ■■ ■■
□□ ■■ ■■ P(A)=1/3
ステイorチェンジ
□□ ■■
■■ □□
■■ □□ P(A)=2/3
Ω={(i,j)|1≦i≦3,1≦j≦2}
#A=3x2−2x1=6−2=4なので
Aの起こる確率p=4/6=2/3
#Aは事象Aに含まれる要素の個数
ドアが三枚の時は当たりの確率P(A)=2/3
450132人目の素数さん
2018/07/15(日) 21:04:32.31ID:6LlspyNu ■ドアが五枚の時のモンティの介在方法
プレイヤーのファーストチョイス
□□| ■■ ■■ ■■ ■■
□□| ■■ ■■ ■■ ■■
□□| ■■ ■■ ■■ ■■ P(A)=1/5
モンティのファーストチョイスと
プレイヤーのファーストチェンジ
A B C D
■■| □□ ■■ ■■ P(B)=4/15
■■| □□ ■■ ■■ P(C)=4/15
■■| □□ ■■ ■■ P(D)=4/15
P(A)=1/5
モンティがAのドアを開けた場合
B C D
□□| ■■ ■■ P(B)=4/15
□□| ■■ ■■ P(C)=11/30 ……α
□□| ■■ ■■ P(D)=11/30
モンティがAのドアを開けない場合
A B C
■■| □□ ■■ P(A)=1/5
■■| □□ ■■ P(B)=2/5 ……β
■■| □□ ■■ P(C)=2/5
αからのチェンジ
P(B)=11/15
P(C)=19/30
P(D)=19/30
βからのチェンジ
P(A)=4/5
P(B)=3/5
P(C)=3/5
プレイヤーのファーストチョイス
□□| ■■ ■■ ■■ ■■
□□| ■■ ■■ ■■ ■■
□□| ■■ ■■ ■■ ■■ P(A)=1/5
モンティのファーストチョイスと
プレイヤーのファーストチェンジ
A B C D
■■| □□ ■■ ■■ P(B)=4/15
■■| □□ ■■ ■■ P(C)=4/15
■■| □□ ■■ ■■ P(D)=4/15
P(A)=1/5
モンティがAのドアを開けた場合
B C D
□□| ■■ ■■ P(B)=4/15
□□| ■■ ■■ P(C)=11/30 ……α
□□| ■■ ■■ P(D)=11/30
モンティがAのドアを開けない場合
A B C
■■| □□ ■■ P(A)=1/5
■■| □□ ■■ P(B)=2/5 ……β
■■| □□ ■■ P(C)=2/5
αからのチェンジ
P(B)=11/15
P(C)=19/30
P(D)=19/30
βからのチェンジ
P(A)=4/5
P(B)=3/5
P(C)=3/5
451132人目の素数さん
2018/07/15(日) 21:05:31.40ID:6LlspyNu Ω={(i,j,k,l,m,n)|5x4x15x30x3x2,4x14x29x3x2x1}
#A=54000−9744=44256なので
Aの起こる確率
p=44256/54000=0.81955555555
#Aは事象Aに含まれる要素の個数
ドアが五枚の時は当たりの確率
P(A)=922/1125=0.81955555555
ちなみに4/5=0.8
#A=54000−9744=44256なので
Aの起こる確率
p=44256/54000=0.81955555555
#Aは事象Aに含まれる要素の個数
ドアが五枚の時は当たりの確率
P(A)=922/1125=0.81955555555
ちなみに4/5=0.8
452132人目の素数さん
2018/07/15(日) 22:20:52.13ID:6LlspyNu βからのステイ
P(A)=1/5
P(B)=4/5
P(C)=4/5
ドアAがゲーム最後まで残っている場合、
ステイで確率が二倍になるという現象が起きる
P(A)=1/5
P(B)=4/5
P(C)=4/5
ドアAがゲーム最後まで残っている場合、
ステイで確率が二倍になるという現象が起きる
453132人目の素数さん
2018/07/16(月) 23:03:22.59ID:4+njKG7s ジョーカーを除いたトランプ52枚の中から1枚のカードを抜き出し、
表を見ないで箱の中にしまった
そして、残りのカードをよく切ってから3枚抜き出したところ、
3枚ともダイアであった
このとき、箱の中のカードがダイヤである確率はいくらか
これはつまり、
『トランプ52枚の中から4枚続けてダイヤを引く確率』
一枚目p=1/4
二枚目p=12/51
三枚目p=11/50
四枚目p=10/49
よってp=10/49
(*´▽`*)
表を見ないで箱の中にしまった
そして、残りのカードをよく切ってから3枚抜き出したところ、
3枚ともダイアであった
このとき、箱の中のカードがダイヤである確率はいくらか
これはつまり、
『トランプ52枚の中から4枚続けてダイヤを引く確率』
一枚目p=1/4
二枚目p=12/51
三枚目p=11/50
四枚目p=10/49
よってp=10/49
(*´▽`*)
454132人目の素数さん
2018/07/16(月) 23:49:31.93ID:4+njKG7s 『トランプ52枚の中から4枚続けてダイヤを引く確率』
これはつまり
『3枚のダイヤが取り除かれたトランプ49枚の中から
次にダイヤのカードを1枚引く確率』
と等しい
これはつまり
『3枚のダイヤが取り除かれたトランプ49枚の中から
次にダイヤのカードを1枚引く確率』
と等しい
455132人目の素数さん
2018/07/17(火) 00:36:35.08ID:AQcwuxTm 『トランプ52枚の中から4枚続けてダイヤを引く確率』≠10/49=0.20408163...
(13/52)*(12/51)*(11/50)*(10/49)=11/4165=0.0026410564...
(13/52)*(12/51)*(11/50)*(10/49)=11/4165=0.0026410564...
456132人目の素数さん
2018/07/17(火) 01:04:30.45ID:coJeSjUd 『トランプ52枚の中から4枚続けてダイヤを引く確率』
これはつまり
『トランプ52枚の中から4枚続けてダイヤを引いた時、
最初の3枚の確率は考慮しなくてよい』
と等しい
これはつまり
『トランプ52枚の中から4枚続けてダイヤを引いた時、
最初の3枚の確率は考慮しなくてよい』
と等しい
457132人目の素数さん
2018/07/17(火) 01:38:45.74ID:AQcwuxTm 「等しい」なんて言っちゃうからツッコミが入るんだって
計算した数字が完全に違うんだから、等しいも何もヘッタクレもない
問題の答えを出すための考え方自体は合ってるから、それ単独ではいいんだけど
以下のワードで検索
『よく話題になる確率の問題を集めてみる 哲学ニュース nwk』
計算した数字が完全に違うんだから、等しいも何もヘッタクレもない
問題の答えを出すための考え方自体は合ってるから、それ単独ではいいんだけど
以下のワードで検索
『よく話題になる確率の問題を集めてみる 哲学ニュース nwk』
458132人目の素数さん
2018/07/17(火) 02:07:48.34ID:coJeSjUd ジョーカーを除いたトランプ52枚の中から1枚のカードを抜き出し、
表を見ないで箱の中にしまった
そして、残りのカードをよく切ってから3枚抜き出したところ、
3枚ともダイアであった
このとき、箱の中のカードがダイヤである確率はいくらか
これはつまり、
『トランプ52枚の中から4枚続けてダイヤを引いた時の
確率を個別に計算し、四枚目の確率を求める』
と等しい、つまり
『3枚のダイヤが取り除かれたトランプ49枚の中から
次にダイヤのカードを1枚引く確率』になる
一枚目p=1/4
二枚目p=12/51
三枚目p=11/50
四枚目p=10/49
よってp=10/49
(*´▽`*)
表を見ないで箱の中にしまった
そして、残りのカードをよく切ってから3枚抜き出したところ、
3枚ともダイアであった
このとき、箱の中のカードがダイヤである確率はいくらか
これはつまり、
『トランプ52枚の中から4枚続けてダイヤを引いた時の
確率を個別に計算し、四枚目の確率を求める』
と等しい、つまり
『3枚のダイヤが取り除かれたトランプ49枚の中から
次にダイヤのカードを1枚引く確率』になる
一枚目p=1/4
二枚目p=12/51
三枚目p=11/50
四枚目p=10/49
よってp=10/49
(*´▽`*)
459132人目の素数さん
2018/07/17(火) 02:17:10.36ID:AQcwuxTm (13-3)/(52-3)=10/49 でいいと思うけど、教科書的に計算するなら
A:最初がダイヤ、後3枚もダイヤ
B:最初がダイヤでない、後3枚がダイヤ
P(A)=(13*12*11*10)/(52*51*50*49)
P(B)=(39*13*12*11)/(52*51*50*49)
P(A)/{P(A)+P(B)}=10/49
A:最初がダイヤ、後3枚もダイヤ
B:最初がダイヤでない、後3枚がダイヤ
P(A)=(13*12*11*10)/(52*51*50*49)
P(B)=(39*13*12*11)/(52*51*50*49)
P(A)/{P(A)+P(B)}=10/49
460132人目の素数さん
2018/07/17(火) 16:58:04.70ID:coJeSjUd P(A)=(1x12x11x10)/(4x51x50x49)
P(B)=(3x13x12x11)/(4x51x50x49)
P(A)=10y/4x
P(B)=39y/4x
P(A)+P(B)=49y/4x
P(A)/{P(A)+P(B)}=(10y/4x)/(49y/4x)
=10/49
P(B)=(3x13x12x11)/(4x51x50x49)
P(A)=10y/4x
P(B)=39y/4x
P(A)+P(B)=49y/4x
P(A)/{P(A)+P(B)}=(10y/4x)/(49y/4x)
=10/49
461132人目の素数さん
2018/07/17(火) 17:02:19.85ID:coJeSjUd P(A)=(1x12x11x10)/(4x51x50x49)
P(B)=(3x13x12x11)/(4x51x50x49)
P(A)=10y/x
P(B)=39y/x
P(A)+P(B)=49y/x
P(A)/{P(A)+P(B)}=(10y/x)/(49y/x)
=10/49
P(B)=(3x13x12x11)/(4x51x50x49)
P(A)=10y/x
P(B)=39y/x
P(A)+P(B)=49y/x
P(A)/{P(A)+P(B)}=(10y/x)/(49y/x)
=10/49
462132人目の素数さん
2018/07/17(火) 17:56:24.23ID:AQcwuxTm P(A)=(13*12*11*10)/(52*51*50*49)
P(B)=(39*13*12*11)/(52*51*50*49)
P(A):P(B)=10:39
P(A)/{P(A)+P(B)}=10/(10+39)=10/49
P(B)=(39*13*12*11)/(52*51*50*49)
P(A):P(B)=10:39
P(A)/{P(A)+P(B)}=10/(10+39)=10/49
463132人目の素数さん
2018/07/17(火) 18:03:35.09ID:coJeSjUd P(A)=(13x12x11x10)/(52x51x50x49)
P(B)=(39x13x12x11)/(52x51x50x49)
P(A)=10
P(B)=39
P(A)+P(B)=49
P(A)/{P(A)+P(B)}=10/49
P(B)=(39x13x12x11)/(52x51x50x49)
P(A)=10
P(B)=39
P(A)+P(B)=49
P(A)/{P(A)+P(B)}=10/49
464132人目の素数さん
2018/07/17(火) 18:09:52.17ID:coJeSjUd ■ドア4枚で最初に当たりを引く確率
P(A)=(1x1x1)/(4x3x2)
P(B)=(3x2x1)/(4x3x2)
P(A)=1/24
P(B)=6/24
P(A)+P(B)=7/24
P(A)/{P(A)+P(B)}=(1/24)/(7/24)
=1/7
P(A)=(1x1x1)/(4x3x2)
P(B)=(3x2x1)/(4x3x2)
P(A)=1/24
P(B)=6/24
P(A)+P(B)=7/24
P(A)/{P(A)+P(B)}=(1/24)/(7/24)
=1/7
465132人目の素数さん
2018/07/18(水) 02:20:39.92ID:yC5LiK2R ■ドア3枚で最初に当たりを引く確率
P(A)=(1x1)/(3x2)
P(B)=(2x1)/(3x2)
P(A)=1
P(B)=2
P(A)+P(B)=3
P(A)/{P(A)+P(B)}=1/3
P(A)=(1x1)/(3x2)
P(B)=(2x1)/(3x2)
P(A)=1
P(B)=2
P(A)+P(B)=3
P(A)/{P(A)+P(B)}=1/3
466132人目の素数さん
2018/07/19(木) 18:54:55.75ID:MfxQjqYK (。・ω・)y-~~ これ…メッチャ単純な話だと思うけどなぁ…
確かに最初に引いた時の確率は1/4だよ…
でもさぁ…表見てないんだろ?
なら…ダイヤ3枚引いた後に箱から出して
表見るとゆ〜行為は…
ダイヤが10枚含まれている49枚のカードから
1枚引くのと同じ行為じゃん…
故に答えは10/49
確かに最初に引いた時の確率は1/4だよ…
でもさぁ…表見てないんだろ?
なら…ダイヤ3枚引いた後に箱から出して
表見るとゆ〜行為は…
ダイヤが10枚含まれている49枚のカードから
1枚引くのと同じ行為じゃん…
故に答えは10/49
467132人目の素数さん
2018/07/19(木) 20:18:13.70ID:MfxQjqYK ◆ドア七枚マルチステージノイズシェーピング
A...B..C..D..E...F..G
□■■■■■■1/7 6/7
□■■■■■1/7 6/35 6/35 6/35 6/35 6/35
□■■■■1/7 6/35 8/35 8/35 8/35
□■■■1/7 6/35 12/35 12/35
□■■1/7 6/35 24/35
1/7 12/35 18/35
□■1/7 6/7
Ω={(i,j,k,l,m,n,o)|7!x35,6!x34}
#A=245−34=211なので
Aの起こる確率p=211/245=0.86122448979
#Aは事象Aに含まれる要素の個数
ドアが七枚の時は当たりの確率P(A)=0.86122448979
ちなみに6/7=0.85714285714
A...B..C..D..E...F..G
□■■■■■■1/7 6/7
□■■■■■1/7 6/35 6/35 6/35 6/35 6/35
□■■■■1/7 6/35 8/35 8/35 8/35
□■■■1/7 6/35 12/35 12/35
□■■1/7 6/35 24/35
1/7 12/35 18/35
□■1/7 6/7
Ω={(i,j,k,l,m,n,o)|7!x35,6!x34}
#A=245−34=211なので
Aの起こる確率p=211/245=0.86122448979
#Aは事象Aに含まれる要素の個数
ドアが七枚の時は当たりの確率P(A)=0.86122448979
ちなみに6/7=0.85714285714
468132人目の素数さん
2018/07/19(木) 21:09:00.02ID:Q8iFYOVr >>467
昭和58年の早稲田文系の入試問題らしいし
旺文社が正解が(1/4)の受験参考書を出版してたらしいし
一時期、2chで大論争になったらしい(現在進行形?)
いつの時代も、間違える人は一定数は必ずいる
モンティ・ホール問題しかり、赤青問題しかり
3枚のカードが袋に入ってます
1枚は両面赤(A)、1枚は両面青(B)、1枚は片面が赤で片面が青(C)です
今、目をつぶって袋からカードを1枚選び、机の上に置いて目を開けたところ、カードは赤でした
このカードの裏が青である確率は?
昭和58年の早稲田文系の入試問題らしいし
旺文社が正解が(1/4)の受験参考書を出版してたらしいし
一時期、2chで大論争になったらしい(現在進行形?)
いつの時代も、間違える人は一定数は必ずいる
モンティ・ホール問題しかり、赤青問題しかり
3枚のカードが袋に入ってます
1枚は両面赤(A)、1枚は両面青(B)、1枚は片面が赤で片面が青(C)です
今、目をつぶって袋からカードを1枚選び、机の上に置いて目を開けたところ、カードは赤でした
このカードの裏が青である確率は?
469132人目の素数さん
2018/07/21(土) 21:28:51.31ID:z7jjEcyg モンティホール問題において
『最初にハズレを引く確率は当たりを引く確率の二倍になる』
という気づきが重要なように
トランプ問題においては
『個別のダイヤのカードの確率は計算不要』
という気づきが重要になります
これに気が付かないと
余計な確率の計算をしてしまうことになります
実際の条件付確率の式
P(A)=(13x12x11x10)/(52x51x50x49)
P(B)=(39x13x12x11)/(52x51x50x49)
分母(52x51x50x49)は不要
分子の(13x12x11)も不要
A=10
B=39
A+B=49
A/(A+B)=10/49
『最初にハズレを引く確率は当たりを引く確率の二倍になる』
という気づきが重要なように
トランプ問題においては
『個別のダイヤのカードの確率は計算不要』
という気づきが重要になります
これに気が付かないと
余計な確率の計算をしてしまうことになります
実際の条件付確率の式
P(A)=(13x12x11x10)/(52x51x50x49)
P(B)=(39x13x12x11)/(52x51x50x49)
分母(52x51x50x49)は不要
分子の(13x12x11)も不要
A=10
B=39
A+B=49
A/(A+B)=10/49
470132人目の素数さん
2018/07/21(土) 21:35:54.92ID:z7jjEcyg モンティがAのドアを開けた場合
B C D
□□| ■■ ■■ P(B)=4/15
□□| ■■ ■■ P(C)=11/30 ……α
□□| ■■ ■■ P(D)=11/30
ここからさらにCにチェンジ
B C D
■■| □□ ■■ P(B)=4/15
■■| □□ ■■ P(C)=11/30
■■| □□ ■■ P(D)=11/30
B C D
□□| ■■ ■■ P(B)=4/15
□□| ■■ ■■ P(C)=11/30 ……α
□□| ■■ ■■ P(D)=11/30
ここからさらにCにチェンジ
B C D
■■| □□ ■■ P(B)=4/15
■■| □□ ■■ P(C)=11/30
■■| □□ ■■ P(D)=11/30
471132人目の素数さん
2018/07/21(土) 21:41:54.61ID:z7jjEcyg モンティがBのドアオープン
C D
□□ ■■ P(C)=1/2
□□ ■■ P(D)=1/2
□□ ■■
モンティがDのドアをオープン
B C
■■| □□ P(B)=4/15
■■| □□ P(C)=11/15
■■| □□
C D
□□ ■■ P(C)=1/2
□□ ■■ P(D)=1/2
□□ ■■
モンティがDのドアをオープン
B C
■■| □□ P(B)=4/15
■■| □□ P(C)=11/15
■■| □□
472132人目の素数さん
2018/07/22(日) 09:36:29.31ID:1KEdqPaH >>470
ドア5枚 ドアAを選ぶ → ドアEを開ける
P(A)=1/5 P(B)=P(C)=P(D)=4/15
ドアBにチェンジ → ドアAを開ける
@ P(当B ∩ 開A)=(4/15)*(1/3)
A P(当C ∩ 開A)=(4/15)*(1/2)
B P(当D ∩ 開A)=(4/15)*(1/2)
@:A:B=(1/3):(1/2):(1/2)=2:3:3
P(当B|開A)=@/(@+A+B)=1/4
P(当C|開A)=A/(@+A+B)=3/8
P(当D|開A)=B/(@+A+B)=3/8
ドア5枚 ドアAを選ぶ → ドアEを開ける
P(A)=1/5 P(B)=P(C)=P(D)=4/15
ドアBにチェンジ → ドアAを開ける
@ P(当B ∩ 開A)=(4/15)*(1/3)
A P(当C ∩ 開A)=(4/15)*(1/2)
B P(当D ∩ 開A)=(4/15)*(1/2)
@:A:B=(1/3):(1/2):(1/2)=2:3:3
P(当B|開A)=@/(@+A+B)=1/4
P(当C|開A)=A/(@+A+B)=3/8
P(当D|開A)=B/(@+A+B)=3/8
473132人目の素数さん
2018/07/22(日) 10:22:52.20ID:1KEdqPaH ドア5枚 ドアAを選ぶ → ドアEを開ける
P(A)=1/5 P(B)=P(C)=P(D)=4/15
ドアBにチェンジ → ドアDを開ける
@ P(当A ∩ 開D)=(1/5)*(1/2)=1/10
A P(当B ∩ 開D)=(4/15)*(1/3)=4/45
B P(当C ∩ 開D)=(4/15)*(1/2)=2/15
@:A:B=(1/10):(4/45):(2/15)=9:8:12
P(当A|開D)=@/(@+A+B)=9/29
P(当B|開D)=A/(@+A+B)=8/29
P(当C|開D)=B/(@+A+B)=12/29
P(A)=1/5 P(B)=P(C)=P(D)=4/15
ドアBにチェンジ → ドアDを開ける
@ P(当A ∩ 開D)=(1/5)*(1/2)=1/10
A P(当B ∩ 開D)=(4/15)*(1/3)=4/45
B P(当C ∩ 開D)=(4/15)*(1/2)=2/15
@:A:B=(1/10):(4/45):(2/15)=9:8:12
P(当A|開D)=@/(@+A+B)=9/29
P(当B|開D)=A/(@+A+B)=8/29
P(当C|開D)=B/(@+A+B)=12/29
474132人目の素数さん
2018/07/22(日) 20:27:47.00ID:84kHkvnw ■ドア四枚が三枚になった時の確率は次の通り
P(A)=1/4 P(B)=3/8 P(C)=3/8
ここからプレイヤーは確率1でBのドアを選ぶ
最後にドアAにチェンジする戦略では
モンティがドアAを開けざる負えない確率は5/8
なので、ドアAが当たりの時の確率1/4をこれで割ると
P(A)/P(C−)=2/5……@
プレイヤーがドアAにチェンジで当たりを引く確率は
2/5に上がる
しかし、プレイヤーは必ず最後にチェンジするので
ドアBが当たりの時でもチェンジする
@にこの確率をかけると(2/5)x(5/8)=1/4
チェンジx2戦略でもP(A)=1/4は不変である
P(A)=1/4 P(B)=3/8 P(C)=3/8
ここからプレイヤーは確率1でBのドアを選ぶ
最後にドアAにチェンジする戦略では
モンティがドアAを開けざる負えない確率は5/8
なので、ドアAが当たりの時の確率1/4をこれで割ると
P(A)/P(C−)=2/5……@
プレイヤーがドアAにチェンジで当たりを引く確率は
2/5に上がる
しかし、プレイヤーは必ず最後にチェンジするので
ドアBが当たりの時でもチェンジする
@にこの確率をかけると(2/5)x(5/8)=1/4
チェンジx2戦略でもP(A)=1/4は不変である
475132人目の素数さん
2018/07/24(火) 01:49:26.80ID:o+aQIn67 ドアBが選択されている場合に、ドアCが開けられるのは、以下の2通り
@ 当たりがAのときにCを開けられる
A 当たりがBのときにCを開けられる
P(開C)=P(当A ∩ 開C) + P(当B ∩ 開C)
=P(当A)*P(開C|当A) + P(当B)*P(開C|当B)
=(1/4)*(1)+(3/8)*(1/2)
=7/16
@ 当たりがAのときにCを開けられる
A 当たりがBのときにCを開けられる
P(開C)=P(当A ∩ 開C) + P(当B ∩ 開C)
=P(当A)*P(開C|当A) + P(当B)*P(開C|当B)
=(1/4)*(1)+(3/8)*(1/2)
=7/16
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- トランプ大統領、半導体と医薬品の関税引き上げを近く発表すると表明 [Hitzeschleier★]
- 関西テレビの大多亮社長が「辞任」を発表 フジテレビ中居さん問題で当時の編成担当役員 [征夷大将軍★]
- 中居正広氏、関係者に「できることはやった。こんなはずじゃなかった」と説明 ★2 [muffin★]
- トランプ大統領 「トランプ・ゴールドカード」公開 7億5000万円で米国永住権取得可能 第一号購入者はトランプ氏「100万枚は売れる」 [Hitzeschleier★]
- トランプ大統領 関税発動で世界各国が米国のために「何でもしてくれる」 強気の姿勢示す [Hitzeschleier★]
- 28歳の時に“三高男”と結婚、6年後に離婚、実家住まいで派遣を転々 年収330万・50歳女性の悲鳴「何が悪かったのか」 [お断り★]
- トランプ「ジャップはアメリカの米に700%の関税かけてるけど、なんで24%で怒ってんの」 [604928783]
- 【安倍速報】関テレ社長、辞任www [359965264]
- トランプ相互関税発表で世界も激動… 中国「対抗措置」EU「対抗措置」カナダ「対抗措置」日本「除外要請」 [452836546]
- ▶マリン船長のえちえちデカケツ
- トランプ大統領 「半導体と医薬品の関税引き上げを近く発表する」 [507895468]
- 【恨み】RADWIMPSから古着屋に転職した人、元メンバーへの悪口が止まらないwwwwwwwwwwwwwwww [458340425]