>>288
係数比較が本当にそこだけなのであれば、>>286により、
そもそも係数比較せずとも恒等的に s-t+2k=0 なので、
係数比較は全く必要なく、よって「 p は不定 」という条件も全く必要ない。
実際には、>>172で別の係数比較を行っている場面がある。それは
>a=gp-g+h+k=((p+1)w+h)p-((p+1)w+h)+h+k
>となるが、Dよりaはpの一次式で表さなければならないから
>w=0
>g=h
>でなければらない。
ここである。しかし、なぜここで正しく係数比較ができるのか、
その理由を説明してないのでダメ。結局は、>>284,>>287に書いたことに帰着される。
あと、>>286で既に指摘があるが、「 p は不定 」を導くための理由もおかしい。
恒等的に s-t+2k=0 なのだから、p が不定でも定数でも、(s-t+2k)p=0 が成り立つのは
当たり前である。よって、(s-t+2k)p=0 という式から「 p は不定 」なんてことは言えない。
奇数の完全数の有無について [無断転載禁止]©2ch.net
■ このスレッドは過去ログ倉庫に格納されています
291132人目の素数さん
2018/03/12(月) 22:52:04.46ID:HK0hlCyC■ このスレッドは過去ログ倉庫に格納されています