>>157
pが一意に定まらないことを証明しました。


a=(p+1)(s+t)/2+r
=(s+t)p/2+(s+t+2r)/2

c=(p+1)(t-s)/2-r
=(t-s)p/2+(t-s-2r)/2

a=gp-g+h+k
c=kp+h
だから


(p+1)(t-s)/2-r=kp+h
(p+1)(t-s)=2kp+2h-2r
(p+1)(t-s)=2kp+4h-2k …D
(s-t+2k)p=-4h+2k-s+t …E
となるが、ここで
a-c=a+c-2c=(p+1)t-2(kp+h)
=(p+1)(t-2k)+2k-2h
r=k-hだから
s=t-2k
となり
(s-t+2k)p=-4h+4k
s-t+2k=0だから
-4h+4k=0
h=kとなるので、(2)に反するので矛盾がおきる。

(p+1)(s+t)/2+r=gp-g+h+k
(p+1)(s+t)=2gp-2g+2h+2k-2r
(p+1)(s+t)=2gp-2g+4h …F
(p+1)(s+t)=2g(p-1)+4h
(p+1)(s+t)/4=g(p-1)/2+h …G

a=(p+1)(s+t)/2+k-h
(a-k+h)/2=(p+1)(s+t)/4
a≡k-h (mod p-1)より、左辺は偶数で、(p+1)/2は奇数であるから
(s+t)/2は偶数となる。

これにより、Gの左辺は偶数になり、hは偶数になる。
よって条件(1)、(2)により、gは偶数、kは奇数になる。

式Fから式Dを辺々引くと
2s(p+1)=2(g-k)p-2g+2k
s(p+1)=(g-k)p-g+k
s(p+1)=(g-k)(p-1)
s(p+1)/2=(g-k)(p-1)/2
となり、左辺は奇数に右辺は偶数になるので矛盾する。

以上から、pは一意の値にはならない。