>>146 つづき
a-c=(g-k)p+k-g=(p-1)(g-k)
a+c=(g+k)p+g+k=(p+1)(g+k)

(a-c)/(g-k)+1=(a+c)/(g+k)-1
(g+k)(a-c)+(g-k)(g+k)=(g-k)(a+c)-(g-k)(g+k)
(g-k)(a+c)-(g+k)(a-c)=2(g-k)(g+k)
(g-k-(g+k))a+(g-k+g+k)c=2(g-k)(g+k)
-2ka+2gc=2(g-k)(g+k)
-ka+gc=(g-k)(g+k)
ka-gc=-(g-k)(g+k)

(kp^n-g)c=-(g-k)(g+k)

g-k=c(p^(n-1)+…+1)より
u=p^(n-1)+…+1とすると
g-k=cu

(kp^n-g)c=-cu(g+k)
kp^n-g=-u(g+k)
(u-1)g=-kp^n-uk

u≡n (mod p-1)
g≡n(h+k)+k (mod p-1)
から
(u-1)g≡(n-1)(n(h+k)+k)≡n(n-1)(h+k)+(n-1)k (mod p-1)
-kp^n-uk≡-k-nk≡-(n+1)k (mod p-1)

n(n-1)(h+k)+(n-1)k+(n+1)k≡0 (mod p-1)
n(n-1)(h+k)+2nk≡0 (mod p-1)
n(n-1)h+n(n+1)k≡0 (mod p-1)

p=4q+1とすると、整数をvとして
n(n-1)h+n(n-1)k=4qv
n((n-1)/2)h+n((n-1)/2)k=2qv
hが奇数、kが偶数であるから、左辺は奇数となるが
右辺は偶数なので矛盾する。

以上から、奇数の完全数は存在しない。