>>748 補足
>・Ono, Ken; Trebat-Leder, Sarah (2016). “The 1729 K3 surface”. Res. Number Theory 2: No. 26. doi:10.1007/s40993-016-0058-2.
>・Ono, Ken; Trebat-Leder, Sarah (2017). “Erratum to: The 1729 K3 surface”. Res. Number Theory 3: No. 12. doi:10.1007/s40993-017-0076-8.

リンクがあるので、下記貼っておきます

link.springer.com/article/10.1007/s40993-016-0058-2
The 1729 K3 surface
Published: 17 October 2016
Volume 2, article number 26, (2016)
Ken Ono & Sarah Trebat-Leder

link.springer.com/article/10.1007/s40993-017-0076-8
Erratum to: The 1729 K3 surface
Published: 10 February 2017
Volume 3, article number 12, (2017)
Ken Ono & Sarah Trebat-Leder

あと、下記追加
特に”The taxicab numbers subsequent to 1729 were found with the help of computers.”
まあ、そういう時代(”with the help of computers”)ってことですね
ja.wikipedia.org/wiki/%E3%82%BF%E3%82%AF%E3%82%B7%E3%83%BC%E6%95%B0
タクシー数
n 番目のタクシー数(タクシーすう、taxicab number、Ta(n)もしくはTaxicab(n)と表記される)とは、2つの立方数の和として n 通りに表される最小の正の整数と定義される。1954年にゴッドフレイ・ハロルド・ハーディとエドワード・メートランド・ライト(英語版)が全ての正の整数 n に対し、Ta(n)が存在することを示した。その証明を利用すれば「2つの立方数の和として n 通りに表される正の整数」を見つけることはできる。ただしそれが最小の数であるかは保証されていないため、Ta(n)であるとは限らない。
「タクシー数」と言う名前はハーディが乗ったタクシーの番号1729についてそれがTa(2)であることをシュリニヴァーサ・ラマヌジャンが指摘したエピソードから来ている(後述)
概要
与えられた正の整数 N に対し、不定方程式
x^3+y^3=N
の整数解 y ≥ x > 0 の個数は明らかに有限個である(0 < y3 < N であるため)。これを s(N) とおく。Ta(n) は s(N) ≥ n となる最小の N である。
任意の n に対して s(N) ≥ n となる整数 N が存在することが知られており、したがって Ta(n) は存在する。

en.wikipedia.org/wiki/Taxicab_number
Taxicab number
History and definition
The taxicab numbers subsequent to 1729 were found with the help of computers. John Leech obtained Ta(3) in 1957. E. Rosenstiel, J. A. Dardis and C. R. Rosenstiel found Ta(4) in 1989.[6] J. A. Dardis found Ta(5) in 1994 and it was confirmed by David W. Wilson in 1999.[7][8] Ta(6) was announced by Uwe Hollerbach on the NMBRTHRY mailing list on March 9, 2008,[9] following a 2003 paper by Calude et al. that gave a 99% probability that the number was actually Ta(6).[10]</ref> Upper bounds for Ta(7) to Ta(12) were found by Christian Boyer in 2006.[11]