>>578 補足
>ジョルダン-シェーンフリースの定理(英語版)を参照されたい
下記ですね
https://en.wikipedia.org/wiki/Jordan_curve_theorem
Jordan curve theorem
Proof and generalizations
There is a strengthening of the Jordan curve theorem, called the Jordan–Schönflies theorem, which states that the interior and the exterior planar regions determined by a Jordan curve in R2 are homeomorphic to the interior and exterior of the unit disk. In particular, for any point P in the interior region and a point A on the Jordan curve, there exists a Jordan arc connecting P with A and, with the exception of the endpoint A, completely lying in the interior region. An alternative and equivalent formulation of the Jordan–Schönflies theorem asserts that any Jordan curve φ: S1 → R2, where S1 is viewed as the unit circle in the plane, can be extended to a homeomorphism ψ: R2 → R2 of the plane. Unlike Lebesgue's and Brouwer's generalization of the Jordan curve theorem, this statement becomes false in higher dimensions: while the exterior of the unit ball in R3 is simply connected, because it retracts onto the unit sphere, the Alexander horned sphere is a subset of R3 homeomorphic to a sphere, but so twisted in space that the unbounded component of its complement in R3 is not simply connected, and hence not homeomorphic to the exterior of the unit ball.
https://en.wikipedia.org/wiki/Schoenflies_problem
Schoenflies problem
In mathematics, the Schoenflies problem or Schoenflies theorem, of geometric topology is a sharpening of the Jordan curve theorem by Arthur Schoenflies. For Jordan curves in the plane it is often referred to as the Jordan–Schoenflies theorem.
Original formulation
The original formulation of the Schoenflies problem states that not only does every simple closed curve in the plane separate the plane into two regions, one (the "inside") bounded and the other (the "outside") unbounded; but also that these two regions are homeomorphic to the inside and outside of a standard circle in the plane.
An alternative statement is that if
C⊂ R ^2 is a simple closed curve, then there is a homeomorphism
f: R ^2→ R ^2 such that
f(C) is the unit circle in the plane. Elementary proofs can be found in Newman (1939), Cairns (1951), Moise (1977) and Thomassen (1992). The result can first be proved for polygons when the homeomorphism can be taken to be piecewise linear and the identity map off some compact set; the case of a continuous curve is then deduced by approximating by polygons. The theorem is also an immediate consequence of Carathéodory's extension theorem for conformal mappings, as discussed in Pommerenke (1992, p. 25).
つづく
純粋・応用数学・数学隣接分野(含むガロア理論)18
■ このスレッドは過去ログ倉庫に格納されています
581現代数学の系譜 雑談 ◆yH25M02vWFhP
2024/08/04(日) 08:35:49.92ID:oj4WjR/C■ このスレッドは過去ログ倉庫に格納されています