ん?表面積…
三角錐は4面ある
三角形は3辺だ
探検
πに収束する数列はどのくらいあるのか?
19poem
2025/10/16(木) 05:00:13.14ID:zvTZXVZe20poem
2025/10/16(木) 05:01:55.65ID:zvTZXVZe 三角錐4面に対し
四角形4辺が対す
正方形6面に対し
六角形6辺が対す
関係ある?
四角形4辺が対す
正方形6面に対し
六角形6辺が対す
関係ある?
21poem
2025/10/16(木) 05:05:23.61ID:zvTZXVZe 正多面体と正多角形の材料個数同じになる形状比
3:4
4:6
を繋ぐと
1:π
になったりする?
3:4
4:6
を繋ぐと
1:π
になったりする?
22poem
2025/10/16(木) 05:07:05.00ID:zvTZXVZe しないか
なら
頂点の数は?
4:4
8:6
こちらも駄目か
なら
頂点の数は?
4:4
8:6
こちらも駄目か
23poem
2025/10/16(木) 05:10:00.31ID:zvTZXVZe 例えば作る角度なら?
三角錐120度
四角形90度
正方形90度
六角形60度
120:90
90:60
ありえる?
三角錐120度
四角形90度
正方形90度
六角形60度
120:90
90:60
ありえる?
24poem
2025/10/16(木) 05:11:37.30ID:zvTZXVZe 作る角度は方眼と対応しないじゃん
違うね
違うね
25poem
2025/10/16(木) 05:14:05.30ID:zvTZXVZe 三角錐は6辺
六角形も6辺
使える?
六角形も6辺
使える?
26poem
2025/10/16(木) 05:15:41.17ID:zvTZXVZe 単なる3倍だった
27poem
2025/10/16(木) 05:16:30.32ID:zvTZXVZe すると
表面積は一切無関係なんだな
表面積は一切無関係なんだな
28poem
2025/10/16(木) 05:18:13.24ID:zvTZXVZe そも
1/2D
1/3D
が網羅か?と言っても
1/2D
1/3D
の見た目がわからないんだから
平面や立体の図形使っててありえないわけなのに気づかなかった
1/2D
1/3D
が網羅か?と言っても
1/2D
1/3D
の見た目がわからないんだから
平面や立体の図形使っててありえないわけなのに気づかなかった
29poem
2025/10/16(木) 05:20:07.43ID:zvTZXVZe 無理だな
投了
投了
30poem
2025/10/16(木) 05:22:59.55ID:zvTZXVZe スレタイ見直した
πに収束する関数膨大にあるんだね
離散を連続化した虚数ありきだから
というまで解析完了で限界だった
投了
πに収束する関数膨大にあるんだね
離散を連続化した虚数ありきだから
というまで解析完了で限界だった
投了
31poem
2025/10/16(木) 05:24:29.22ID:zvTZXVZe 虚数について
また1つ
わかった
また1つ
わかった
32poem
2025/10/16(木) 05:25:39.14ID:zvTZXVZe とーりーび(A+…n)
2025/10/16(木) 12:02:10.24ID:Jv/ieo3k
ある静止状態になる確率が1/πと推定できるサイコロの形状を考えよ
34132人目の素数さん
2025/10/18(土) 11:24:47.62ID:TcLaFb2h 特性類とガウス・ボンネの定理
にもπが出てくる
にもπが出てくる
35132人目の素数さん
2025/11/09(日) 16:46:37.14ID:389pAqJB πに収束する無限数列Sを一つ固定する。
その数列の第1項目を任意の実数aに置きかえた
数列をS(a)とすると、S(a)はπに収束する数列である。
よって、そのような数列は少なくとも非可算無限に
存在する。
その数列の第1項目を任意の実数aに置きかえた
数列をS(a)とすると、S(a)はπに収束する数列である。
よって、そのような数列は少なくとも非可算無限に
存在する。
36132人目の素数さん
2025/11/10(月) 13:41:38.81ID:E9HRhuAO その数列は、3個以上あると思われるます。∵
a[n] = π + 1/n ─── ➀
a[n] = π + 2/n ─── ➁
a[n] = π + 3/n ─── ➂
よし、3個発見しました。ヨシ(๑•̀ㅂ•́)و✧
a[n] = π + 1/n ─── ➀
a[n] = π + 2/n ─── ➁
a[n] = π + 3/n ─── ➂
よし、3個発見しました。ヨシ(๑•̀ㅂ•́)و✧
37132人目の素数さん
2025/11/11(火) 00:22:47.87ID:Xciw5HvP 連続濃度の無限集合の有限個の直積集合は連続濃度の
無限集合。
無限集合。
レスを投稿する
ニュース
- 【ヒグマ】焼却施設が限界 駆除数17倍で処理に追われる自治体 1頭焼却に灯油100リットル 作業追いつかずに腐敗進み、埋めるケースも [ぐれ★]
- 【イオン】中国湖南省に新大型店を開業 混乱なく地元客でにぎわい モール内にユニクロや無印良品 [1ゲットロボ★]
- 【芸能】『バンダイナムコフェス』上海公演 日本人歌手・大槻マキが歌唱中に強制退場… 急に音を止められスタッフらしき人達に★2 [冬月記者★]
- 「特に中国は事態悪化を控えるべき」 日中対立巡りフランス高官言及 [蚤の市★]
- 住宅ローン金利、大手4行で「最高水準」に…10年固定の基準金利4.40-5.15% [蚤の市★]
- 《「最近いつした?」が口癖》国分太一 女性への“わいせつ事案”報道…目撃されていた「下ネタ好き」と「悪辣なイジり癖」★3 [Ailuropoda melanoleuca★]
- 一流経済学者(70)「WSJの記事はウソだ。情報を取れない人が書いている」 [309323212]
- 中国人=アスペルガーって考えると国家運営のやり方とか大抵納得行く件
- 昨日高市に8000万の宣伝費報道が出てから各社高市に批判的な記事を一斉に出し始める。一体何が起こってるんや…🤔 [931948549]
- 高市応援団、急に消える。一体何故🤔 [256556981]
- 【実況】博衣こよりのえちえちゼルダの伝説 ムジュラの仮面🧪
- 今泣いて何年か後の自分🌃💃🏻🏡
