>>511

幾何学の方では、無限遠点が考えられている
天才リーマンは、
複素直線(複素数平面)C に一点 {∞} を加えた空間(2 次元の)球面と同相な、リーマン球面を導入して
複素関数の理論を展開した(下記)

https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E9%81%A0%E7%82%B9
(抜粋)
無限遠点(むげんえんてん、point at infinity)とは、限りなく遠いところ(無限遠)にある点のことである。日常的な意味の空間を考えている限り無限遠点は仮想的な概念でしかないが、無限遠点を実在の点とみなせるように空間概念を一般化することができる。そのようにすることで理論的な見通しが立てやすくなったり、空間概念の応用の幅が拡がったりする。

例えば、通常、平面上の二直線の位置関係は一点で交わるか平行であるかのどちらかであるとされている。これを、平行な二直線は無限遠点で交わるのだと考えることにすると、平面上の二直線は必ず一点で交わるという簡明な性質が得られることになる。(この例について、詳しくは非ユークリッド幾何学などを参照のこと)

ユークリッド平面上の互いに平行な 2 直線の交点のことである。厳密にはこの交点はユークリッド平面の中には存在しないから、無限遠点はユークリッド平面の外に存在する。 無限遠点の全体は無限遠直線を描く。

実射影平面と呼ぶ。すると、上で述べたことは 実平面 R2 は実射影平面 P2(R) に埋め込めるということに他ならない。

無限遠点の全体は直線になる。この l∞ を無限遠直線と呼ぶ。

互いに平行な直線の交点

平行な二つの直線を斉次化して ax + by + cz = 0, ax + by + dz = 0 と表すと、連立させて解いて [b, -a, 0] = [-b/a, 1, 0] という交点を見つけることができる。

一般化

一般に、n 次元のユークリッド空間に対し、斉次座標の方法により、空間外の点を加えてn 次元実射影空間 Pn(R)を構成することができる。

例えば、複素直線(複素数平面)C に一点 {∞} を加えた空間は(2 次元の)球面と同相であり、リーマン球面と呼ばれ、 P(C) と書かれる。(次数を明示して P1(C) と書かれることもある。)

リーマン球面は、複素射影直線であり、実射影平面P2(R) とは位相が異なる。