>>461

つづき

https://rio2016.5ch.net/test/read.cgi/math/1483314290/27
d∈Nの性質から確率は1/2以上と即答したいところ。
しかし実際にはdが可測ではなく、事象d(r1)≦d(r2)を含む加法族で
確率空間を構成することはできないと思います。
この部分を測度論的確率論で説明可能と言うには、
やはりここでも内測度の議論が必要になるのではないでしょうか?

https://rio2016.5ch.net/test/read.cgi/math/1483314290/28
>>27のような単純な問題に対し確率論が普通の意味での確率を
与えないことこそがこの問題の本質と捉えていました。
(そこを一歩進んでinner/outer measureの議論に入らないかぎり、
まったく進歩がないわけですが)

https://rio2016.5ch.net/test/read.cgi/math/1483314290/32
確率空間は(R^N,μ)×(R^N,μ)、事象d(r1)≦d(r2)はR^N×R^Nの部分集合E={(r1,r2)|d(r1)≦d(r2)}。
この場合、Eは非可測なので>>15と同様に考えると、
r1,r2∈R^Nを選ぶ順序によって確率P(d(r1)≦d(r2))は変わることになります。
r1を先に選ぶなら確率1、r2を先に選ぶなら確率0。
同時に選ぶなら、選び方の条件を追加つまり非可測集合にも(非加法的)測度を与えなければ
確率は定まらないですね。
でも、このようなことはGAME1での混合戦略には関係ないでしょう。

https://rio2016.5ch.net/test/read.cgi/math/1483314290/33
>>27はHart氏のいう単純戦略、あるいは>>15のGAME-Aでの混合戦略の確率μ(E_k)に対応するものですね。
GAME1での混合戦略では出題後の勝つ確率はν(E_s)。
確率的選択の順序を(無意識のうちに)入れ替えてしまう(GAME1とGAME-Aなどを混同してしまう)誤りが
「当てれるのに、当てれないと思ってしまう」ことの原因である、というのが私の主張です。
非可測集合の内測度・外測度を考えたり、非加法的測度を与えたりするのは、
確かに普通の(可測集合しか扱わない)確率論ではないかもしれません。
でもそれはちょっとした発展であって、別の確率論というものではないでしょう。

つづく