>>371

つづき


(簡単に要約すると)
The ruler function f is defined by f(x) = 0 if x is irrational, f(0) = 1, and f(x) = 1/q if x = p/q where p and q are relatively prime integers with q > 0.

1)r=0 は、ディリクレの関数で、いたるところで不連続
2)r=1 は、トマエ数で、有理数Qで不連続、無理数で連続
3)0 < r <= 2, f^r is nowhere differentiable
4)For each r > 2, f^r is differentiable on a set that has c many points in every interval.
5)For each 0 < r < 2, f^r satisfies no pointwise Lipschitz condition.
6)For r = 2, f^r is nowhere differentiable and satisfies a pointwise Lipschitz condition on a set that is dense in the reals
7)For r > 2, f^r is differentiable on a set whose intersection with every open interval has Hausdorff dimension 1 - 2/r
8)Using ruler-like functions that "damp-out" quicker
than any power of f
 f_w(x) = 0 for x irrational, f_w(0) = 1, and f_w(p/q) = 1/w(q) where p and q are relatively prime integers.
 (increasing function that eventually majorizes every power function)
 f_w is differentiable on a set whose complement has Hausdorff dimension zero.
9)Interesting, each of the sets of points where these functions fail to be differentiable is large in the sense of Baire category.
(要約終わり)
<前振り終わり>

つづく