X



トップページ数学
1002コメント414KB
分からない問題はここに書いてね447
■ このスレッドは過去ログ倉庫に格納されています
0026132人目の素数さん
垢版 |
2018/09/18(火) 08:38:44.63ID:3cV882Ep
>>8
[第1段]:x^3+y^3=x^2+42xy+y^2 …@ の両辺はxとyの対称式だから、
(x,y) の存在性の考察や、もし (x,y) が存在するとしたときに (x,y) を求める考察では、x≧y≧1 としても一般性は失わない。
仮に、@ を満たすような正の整数の組 (x,y) が存在するとする。
1):x=y=1 とすると、@ の等号は成り立たないから (1,1) は不適。
2):(x,y)=(2,1) とすると、同様に、@ の等号は成り立たず (2,1) は不適。
3):(x,y)=(2,2) とすると、同様に、@ の等号は成り立たず (2,2) は不適。
4):x≧3、y=1 のとき。このとき、@ から x^3=x^2+42x だから、x≠0 から x^2−x=42。従って、x(x−1)=42 となる。
故に、x=7。逆に (x,y)=(7,1) は @ を満たす。故に、(x,y)=(7,1) は適する。
[第2段]、5):x≧3、y≧2 のとき。m=x+y とおく。x^3+y^3=m(x^2−xy+y^2) で、x^2−xy+y^2>0 だから、@ から、
m=(x^2+42xy+y^2)/(x^2−xy+y^2)=1+43xy/(x^2−xy+y^2) …A
で x^2−xy+y^2≧xy>x,y、従って x^2−xy+y^2 は2正整数 x,y のどちらをも割り切らない。
故に、x^2−xy+y^2 は 素数43 か 43x か 43y か 43xy のどれかを割り切る。
0027132人目の素数さん
垢版 |
2018/09/18(火) 08:43:48.37ID:3cV882Ep
>>8
(>>26の続き)
[第3段]:或る (x,y) が存在して x^2−xy+y^2 は 素数43 か 43x か 43y のどれかを割り切るとする。
5-1):x^2−xy+y^2 が43を割り切るとき。x≧y≧2 としているから x^2−xy+y^2=43 …B となる。
x≧3、y≧2 としているから、y^2 の値は4、9、16、25、36の何れかの値になる。従って、yの値は2、3、4、5、6の何れかになる。
5-1-1):y=2 のとき。このとき B から x^2−2x=x(x−2)=39。
39は 39=3・13 と素因数分解出来るから、xの値は存在しない。よって、矛盾。
5-1-2):y=3 のとき。このとき B から x^2−3x=x(x−3)=34。
34は 34=2・17 と素因数分解出来るから、同様に、xの値は存在しない。よって、矛盾。
5-1-3):y=4 のとき。このとき B から x^2−4x=27。しかし、x^2−4x−27=0 の
2解 x=2±√31 はどちらも正整数ではないから、正整数xについて矛盾が生じる。
5-1-4):y=5 のとき。このとき B は x^2−5x=18 となる。しかし、x^2−5x−18=0 の2解
x=(5±√97)/2 はどちらも正整数ではないから、正整数xについて矛盾が生じる。
5-1-5):y=6 のとき。このとき B は x^2−6x=7 となる。従って、x^2−6x−7=(x−7)(x+1)=0 から、x=7。
しかし、(x,y)=(7,6) のときは @ つまり x^3+y^3=x^2+42xy+y^2 について、
(左辺)−(右辺)=7^3+6^3−(7^2+42・6・7+6^2)=7^2・(7−1)+6^2・(6−1)−42・6・7
        =7^2・6+6^2・5−42・6・7
        =49・6+36・5−42^2=294+180−42^2=474−42^2
        ≠0
となって、(x,y)=(7,6) のときは @ が成り立たない。よって、矛盾が生じる。
5-1-1)〜5-1-5) から、x^2−xy+y^2 が43を割り切るとき、何れの場合も矛盾が生じる。
0028132人目の素数さん
垢版 |
2018/09/18(火) 08:53:41.24ID:3cV882Ep
>>8
(>>27の続き)
5-2):x^2−xy+y^2 が43xを割り切るとき。このとき、或る正整数nが存在して、n(x^2−xy+y^2)=43x となる。
よって、nは素数43か正整数xのどちらかを割り切る。
5-2-1):nが素数43を割り切るとき。43の正の約数は1と43の2つに限るから、n=43 としてよい。
そこで、n=43 とすると、x^2−xy+y^2=x、従って x(x−y−1)+y^2=0。x≧y≧2 としているから x<y+1、
故に x=y から、x^2−x=x(x−1)=0。しかし、これを満たすxは存在せず矛盾する。
5-2-2):nがxを割り切るとき。xの最大の約数はxなることに着目すると n=x としてよい。そこで、n=x とすると、x^2−xy+y^2=43、
ゆえに x^2−xy+y^2 は43を割り切る。しかし、5-1)のときと同様に考えると、矛盾が生じることになる。
5-2-1)、5-2-2) から、nについて何れのときも矛盾が生じる。
故に、x^2−xy+y^2 が43xを割り切るとき、正整数nは存在しないことになって、矛盾が生じる。
5-3):x^2−xy+y^2 が43yを割り切るとき。x≧y, x≧3, y≧2 としているから、5-2) と同様に考えると、矛盾が生じる。
5-1)、5-2)、5-3) から、何れのときも矛盾が生じるから、x^2−xy+y^2 (x≧y≧2, x≧3) が
43、43x、43y のどれかを割り切るようなxとyの組 (x,y) (x≧y≧2, x≧3) は存在しない。
0029132人目の素数さん
垢版 |
2018/09/18(火) 08:59:41.55ID:3cV882Ep
>>8
(>>28の続き)
[第4段]、5-4):x≧3、y≧2 であって、x^2−xy+y^2 が43xyを割り切るとき。
[第2段] までの議論に従い @ を満たす組 (x,y) が存在するとする。すると、x^2−xy+y^2>x,y であって、
x^2−xy+y^2 は x,y のどちらをも割り切らない。また、x^2−xy+y^2 は43、43x、43y の何れをも割り切らない。
43xy の約数をすべて挙げると43、x、y、43x、43y、xy、43xy となるから、x^2−xy+y^2 は xy か 43xy のどちらかを割り切る。
5-4-1):x^2−xy+y^2 が xy を割り切るとき。すると、xy の最大の約数は xy なることに着目すると x^2−xy+y^2=xy としてよい。
そこで、x^2−xy+y^2=xy とすると、(x−y)^2=0 となって、x=y を得る。従って、A から、
m=1+43xy/(x^2−xy+y^2)=1+43x^2/(x^2−x^2+x^2)=1+43=44。
m=x+y としていたから x+y=44 であり、x=y=22。逆に、(x,y)=(22,22) は @ を満たすから、(x,y)=(22,22) は適する。
5-4-2):x^2−xy+y^2 が 43xy を割り切るとき。x^2−xy+y^2 は43を割り切らないから、5-4-1)の議論に帰着される。
5-4-1)、5-4-2) から、@ を満たす正整数 x,y の組は (x,y)=(22,22)。
[第5段]:5-1)、5-2)、5-3)、5-4) から、x≧3、y≧2 (x≧y) のとき @ を満たす正整数 x,y の組は (x,y)=(22,22)   ( 5:x≧3、y≧2 のとき終わり )。
1)〜5) から、x≧y≧1 とした上での @ を満たす正整数 x,y の組は (x,y)=(7,1)、(22,22)。
[第6段]:@ の左辺 x^3+y^3 と @ の右辺 x^2+42xy+y^2 がxとyの対称式なることに注意して x≧y≧1 としていたから、
はじめに y≧x≧1 として上と同様に考えれば、@ を満たす正整数 x,y の組は (x,y)=(7,1)、(1,7)、(22,22) の3つ。
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況