>>210
なにをいってるかさっぱりわからないようなのでもう少しかいてみます。

>何を言っているのかさっぱり分かりませんが、bの形から全てのkに対して対称になっています。
>pr=(p+1)/2となるk=rはそれ以外にも複数ある可能性があります。そのうちck<qk-1となるものに関しては添え字のみが異なるだけですので、同じ議論が同等にできて

なってないでしょ?
もう素因子の数は4個に限定します。
であなたが、証明したのは
∃y A B p p1 p2 p3
yは奇数の完全数,pは素数でv_p(y) = 4m+1
p1≠p2、p2≠p3、p3≠p1、
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A
q1 = v_p1(B)、c1 = v_p1(A)、q2 = v_p2(B)、c2 = v_p2(A)、q3 = v_p3(B)、c3 = v_p3(A)、
p = 2p1 - 1
⇒∃w 2m+1 = wpr^(q1-c1-1)
でしょ?(この証明もダメダメだけど。)
これでp1とp2入れ替えたら(すこしでも整合するようにqr,crもかえて)
∃y A B p p2 p1 p3
yは奇数の完全数,pは素数でv_p(y) = 4m+1
p2≠p1、p1≠p3、p3≠p2、
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A
q2 = v_p2(B)、c2 = v_p2(A)、q1 = v_p1(B)、c1 = v_p1(A)、q3 = v_p3(B)、c3 = v_p3(A)、
p = 2p2 - 1
⇒∃w 2m+1 = wp2^(q2-c2-1)
になるでしょ?
この2つ合わせられると思う?合わせるのは勝手だけど合わせたら
∃y A B p p2 p1 p3
yは奇数の完全数,pは素数でv_p(y) = 4m+1
p1≠p2、p2≠p3、p3≠p1、
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A
q2 = v_p2(B)、c2 = v_p2(A)、q1 = v_p1(B)、c1 = v_p1(A)、q3 = v_p3(B)、c3 = v_p3(A)、
p = 2p1 - 1 = 2p2 -1
⇒∃w 2m+1 = wp1^(q1-c1-1) = wp2^(q2-c2-1)
になるでしょ?
これでいいの?