分からなければ分かるまで何度でも説明してやりゃいいよ

>2b=c(p^n+…+1)
>はこの問題が成り立つための式ですけど。

p が固定値でないという主張を通すと、
一度この式が成り立つとして定めた値から p を変化させるとこの式が成り立たなくなる。
だから、その主張はおかしいと言われているわけだ。

2b=c(p^n+…+1) より
b=c((p+1)/2)(p^{n-1}+p^{n-3}+…+1)
(p+1)/2が素数のときこれをprと仮定したので
b=c・pr(p^{n-1}+p^{n-3}+…+1)
b=Πpk^qkとおくと、c は b の約数だから 0≦ck≦qk となる ck について c=Πpk^ck と書ける
よって (p^{n-1}+p^{n-3}+…+1)=b/(c・pr) = (Πpk^{qk-ck})/pr
f(pr) は (p^{n-1}+p^{n-3}+…+1)/pr^{qr-cr-1} に等しいから Π{k=1〜r-1}pk^{qk-ck} となる。これは整数のはずだ。ここまではいい。

r≠kのときpr≠pkだから、pk を (p+1)/2 と等しくなるようにするには、
上記の「この問題が成り立つための式」に当てはまる p とは別の値を持ってくる必要がある。
紛らわしいのでその値を P とする。つまり pk=(P+1)/2

f(pk) は (P^{n-1}+P^{n-3}+…+1)/pr^{qr-cr-1} であり
(p^{n-1}+p^{n-3}+…+1)/pk^{qk-ck-1} が整数であるということが言えたとしても、
これら2つの式が等しくなることはないので、f(pk) が整数であるとは到底言えない。
f(pk) が整数でなければ、当然 2m+1 が pk^(qk-ck-1) の倍数とは言えない。

よって
>>158
>>式Jから、任意のkに対してbがpk^qkで割り切れるためにはwを奇数として
>>2m+1=wΠ{k=1..r}pk^(qk-ck-1)
>としているが、こんな乱暴な結論は導けない。

となる。