補題3
λを平方数でない (Z/pZ)* の元とする。
x,y についての 4 つの方程式
(a) x^2+1≡y^2 (mod p)
(b) x^2+1≡λy^2 (mod p)
(c) λx^2+1≡y^2 (mod p)
(d) λx^2+1≡λy^2 (mod p)
が、(Z/pZ)* に解を持てば、n=p, k=1,…,p-1 の場合に予想が成り立つ。

証明
・k が mod p で A1 に属する場合

T を木とし、3 の倍数でも p の倍数でもない b∈T を任意に取る。
b は mod p で A1 か A2 のいずれかに属するが、A1 の場合は
 b*2^d≡k (mod p)
となる d が存在するのでOK。

b が mod p で A2 に属するとする。b は mod 3p で B2 に属する。
このときは、
 「ある c∈A1 が存在して 3c+1∈B2」 …(*)
が成り立てば予想が成り立つ。
補題1,2 より、条件(*)は
 3x^2+1≡λy^2 (mod p)
を満たす x,y∈(Z/pZ)* が存在することと同値。
この方程式は、3 が Z/pZ で平方数なら
 x^2+1≡λy^2 (mod p)
と同値であり、3 が Z/pZ で平方数でなければ
 λx^2+1≡λy^2 (mod p)
と同値である。

・k が mod p で A2 に属する場合

上の場合において、A1 と A2, B1 と B2 を入れ替えれば同様に議論でき、
「ある c∈A2 が存在して 3c+1∈B1」 …(**)
が成り立てば予想が成り立つ。
補題1,2 より、条件(**)は
 3λx^2+1≡y^2 (mod p)
を満たす x,y∈(Z/pZ)* が存在することと同値。
この方程式は、3 が Z/pZ で平方数なら
 λx^2+1≡y^2 (mod p)
と同値であり、3 が Z/pZ で平方数でなければ
 x^2+1≡λy^2 (mod p)
と同値である。□