xy平面の点A(1,1)を通る直線と円C:x^2+y^2=1が交点を持つとき、その交点のAに近い方をPとする(ただ一つの交点を持つ場合はそれをPとする)
また、この直線上のAから見てPの側に点Qをとり、AP・AQ=kとなるようにする。ここでkは正の定数である。

(1)点Qが動いてできる曲線Kにより、円Cの内部が面積が等しいように二分される場合のkの値を求めよ。

(2)(1)のとき、KとCとの2交点をそれぞれS,Tとする。sin(∠SAT)≧(i/10)となる最大の整数を求めよ。