A を平面の点の空でない集合とし、 f(x, y) を A で定義された関数とする。
平面の点の集合 S に対し、最大値の定理の証明の中だけで使う記号
A ≦ S と A > S を定義する。 A の任意の点 (x, y) に対し、 S に含まれる
A の点 (s, t) で f(x, y) ≦ f(s, t) をみたすものが存在するとき、 A ≦ S と
書く。 A の点 (x, y) で、 S に含まれる A の任意の点 (s, t) に対し
f(x, y) > f(s, t) となるものが存在するとき、 A > S と書く。記号 A ≦ S と
A > S の意味は関数 f(x, y) によって決まるものだが、記号からは省略した。

A が S の部分集合ならば A ≦ S である。 A は空集合ではないから、
A と S が交わらないならば A > S である。 A ≦ S ならば f(x, y) の最大値を
とる A の点で S に含まれるものがあるはずであり、 A > S ならば f(x, y) の
A での最大値をとる点は S には含まれない。

(1)と(2)のどちらが A ≦ S の定義でしょうか?

(1)
A ≦ S



∀(x, y) ∈ A, ∃(s, t) ∈ A ∩ S such that f(x, y) ≦ f(s, t)

(2)
A ≦ S



∃(s, t) ∈ A ∩ S, ∀(x, y) ∈ A such that f(x, y) ≦ f(s, t)


(1)だと解釈すると、

「A が S の部分集合ならば A ≦ S である。」

は成り立ちますが、

「A ≦ S ならば f(x, y) の最大値をとる A の点で S に含まれるものがある。」

は成り立ちません。

(2)だと解釈すると

「A が S の部分集合ならば A ≦ S である。」

は成り立ちませんが、

「A ≦ S ならば f(x, y) の最大値をとる A の点で S に含まれるものがある。」

は成り立ちます。