>>253
(引用開始)
>>248
>だから、2)→3)又は1)→3)が言えれば良い
言えないよ。もしそこが言えたら、
(★) (a,b)⊂B_f なる開区間が存在するなら、f は (a,b) 全体でリプシッツ連続である
ということが示せることになってしまうが、既に見たように
f(x)=0 (x=0), x^{3/2}sin(1/x) (x≠0)
が(★)の反例になっている。この例では、(−1,1)⊂B_f が成り立つにも関わらず、
f は (−1,1) 上ではリプシッツ連続になってない。
つまり、お前の方針は自動的に失敗する。」
(引用終り)

えーと

>>13
定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
(引用終り)

いいかな
1)Bfの条件は、下記の4つの Dini微分 (D^+ g)(c),(D + g)(c),(D^- g)(c),(D - g)(c)が有限値で収まることを意味している。(下記a))
2)ディニ微分は、もし f が t において微分可能ならば、その t における各ディニ微分は通常の意味での微分に等しい。(下記b))
3)函数 f(x) = x^3/2sin(1/x) (x ≠ 0) かつ f(0) = 0 を閉区間 [0,1] へ制限したものは、コンパクト集合上微分可能だが局所リプシッツでない函数の例を与える。実際、その導函数は有界でない。(下記c))
4)従って、この例は、lim sup y→x |(f(y) − f(x))/(y − x)|も、有界でない
5)要するに、 lim sup y→x |(f(y) − f(x))/(y − x)|< +∞と、リプシッツ連続(=有限なリプシッツ定数を持つ)は、同じことを言っていると思うよ

つづく