X



トップページ数学
632コメント701KB
現代数学の系譜 工学物理雑談 古典ガロア理論も読む51
■ このスレッドは過去ログ倉庫に格納されています
0001現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/08(木) 21:58:07.31ID:rfgP69By
“現代数学の系譜 物理工学雑談 古典ガロア理論も読む”

数学セミナー時枝記事は、過去スレ39 で終わりました。
39は、別名「数学セミナー時枝記事の墓」と名付けます。

皆さまのご尽力で、伝統あるガロアすれは、
過去、数学板での勢いランキングで、常に上位です。(勢い1位の時も多い(^^ )

このスレは、現代数学のもとになった物理工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで良ければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^

話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。
“時枝記事成立”を支持する立場からのカキコや質問は、基本はスルーします。それはコピペで流します。気が向いたら、忘れたころに取り上げます。

なお、
小学レベルとバカプロ固定
サイコパスのピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」)
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
High level people
低脳幼稚園児のAAお絵かき
お断り!
小学生がいますので、18金よろしくね!(^^

High level people は自分達で勝手に立てたスレ28へどうぞ!sage進行推奨(^^;
また、スレ43は、私が立てたスレではないので、私は行きません。そこでは、私はスレ主では無くなりますからね。このスレに不満な人は、そちらへ。 http://rio2016.2ch.net/test/read.cgi/math/1506152332/
旧スレが512KBオーバー(又は間近)で、新スレ立てる
(スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。)
0026132人目の素数さん垢版2018/02/09(金) 17:02:16.79ID:+GSyCLQ+
>>25 つづき

一方で、1)の場合については、補集合が「R中稠密でない」から、“Q”(開集合の存在)を含意しているから、証明の必要もない。
(例えば、そのような例として、ディリクレ関数の変形で、1)整数点のみ1で、他は0の関数、2)有理数p/q で分母がある値m以下(q < m)でのみ1で、他は0の関数、3)区間[0,1] などなど、いろいろ考えられる。)

つづく
0027132人目の素数さん垢版2018/02/09(金) 17:05:40.56ID:+GSyCLQ+
>>26 つづき

これを纏めると
1)の場合については、補集合が「R中稠密でない」から、“Q”(開集合の存在)を含意しているから、証明の必要もない、トリビアな主張
2)の場合については、一般には、(例えば性質Gが“fが連続”)とした場合、稠密な補集合が存在し反例となるか、例外的に補集合が空集合になる。
(反例は、1例をあげればいいが、「例外的に補集合が空集合になる」ことはきちんと別に証明が必要だ。)
3)だから、定理1.7のような、「補集合がベールの第一類集合→”ある開区間(a,b)⊂Bfが存在する”」という形の定理は、まっとうな数学の定理として、相応しくない。

これを、もとの定理1.7について見るに、
性質G“Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }”の補集合R−Bfが、(稠密で)開区間の反例として存在しうるのか、あるいは、「例外的に補集合が空集合になる」のか? そこは分らない。
>>25で述べたように、Gδ−Fσ理論が当てはまるなら、反例として存在しうるように思う。)

しかし、上記のような事情で、1)の場合については、証明の必要もないトリビアな主張だから、2)の場合だけをきちんと取り上げて、補集合R−Bfが、(稠密で)開区間の反例として存在しうるのか、あるいは、「例外的に補集合が空集合になる」のかだけを、定理として扱うべき。
2)の場合を、”ある開区間(a,b)⊂Bfが存在する”という形で扱うべきではない。

元の定理1.7では
2)の場合は、「P’∧Q’2(補集合が稠密)→P’∧Q’2(開区間(a,b)⊂Bfが存在しない)→Q(ある開区間(a,b)⊂Bfが存在する)」だ
だから、仮定命題がT(真)のとき、必ず結論命題がF(偽)になる。
命題全体が真になるためには、仮定命題がF(偽)で無ければならない。
そういう命題は、まっとうな数学の命題としては、相応しくない。

つづく
0028132人目の素数さん垢版2018/02/09(金) 17:10:04.54ID:+GSyCLQ+
>>27 つづき

あと、ここ
スレ50 https://rio2016.5ch.net/test/read.cgi/math/1516499937/602
602 名前:132人目の素数さん[sage] 投稿日:2018/02/08(木) 00:17:44.89 ID:c/0Ko5CH
(抜粋)
証明は既に終わっている。
定理1.7 により、定理1.7.2 は仮定が偽の命題であることが即座に従うw
(引用終わり)

その論法は、証明論としては、おかしい。
定理1.7.2は、定理1.7の場合分けした中の一つの場合だから、定理1.7が真とすれば、普通は条件(仮定)命題は“真”だ。

その場合分けの定理1.7.2の仮定も真で無ければならない。つまり、証明の場合分けは、仮定命題を細分化したものだからだ。
「定理1.7の仮定 =定理1.7.1の仮定 ∨ 定理1.7.2仮定」 なのだから、定理1.7の仮定が真で定理1.7.2の仮定が偽はありえない。(論理学の基本)

なお、命題「P’∧Q’2(開区間(a,b)⊂Bfが存在しない)→Q(ある開区間(a,b)⊂Bfが存在する)」は、数学の定理として証明できない。
これは、自明だと思うので、詳細は省略する。

つづく
0029132人目の素数さん垢版2018/02/09(金) 17:10:40.92ID:+GSyCLQ+
>>28 つづき

(参考)
https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E
不連続性の分類
(抜粋)
トマエ函数は、全ての有理数の点で不連続だが、全ての無理数の点で連続である。
(引用終わり)

https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E
不連続性の分類
(抜粋)
関数の不連続点の集合
函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。
(引用終り)

以上
0030132人目の素数さん垢版2018/02/09(金) 17:19:22.31ID:+GSyCLQ+
>>26 訂正

3)区間[0,1] などなど、いろいろ考えられる。)
 ↓
3)区間[0,1] のみがディリクレ関数で他の区間はf=0、などなど、いろいろ考えられる。)

ああ、”息をするように間違言える”(>>20より)が当たっているな〜(^^;
0031132人目の素数さん垢版2018/02/09(金) 17:31:11.78ID:+GSyCLQ+
>>28 訂正

「定理1.7の仮定 =定理1.7.1の仮定 ∨ 定理1.7.2仮定」 なのだから、定理1.7の仮定が真で定理1.7.2の仮定が偽はありえない。(論理学の基本)
 ↓
「定理1.7の仮定 =定理1.7.1の仮定 ∪ 定理1.7.2仮定」 なのだから、定理1.7の仮定命題全体が真で、定理1.7.2の仮定が偽はありえない。(論理学の基本)

ああ、”息をするように間違言える”(>>20より)が当たっているな〜(^^;
0032132人目の素数さん垢版2018/02/09(金) 17:51:03.40ID:+GSyCLQ+
>>30 訂正の訂正

ああ、これも考えると、区間[0,1] が全部不連続区間になるので、
”内点を持たない閉集合”に反するね

なので、面倒だから、3)の場合は取り下げます

ああ、”息をするように間違言える”(>>20より)が当たっているな〜(^^;
0033132人目の素数さん垢版2018/02/09(金) 17:51:12.26ID:BQNskNAA
ヨーイ、ドン!!

三(卍^o^)卍ドゥルドゥル
三(卍^o^)卍ドゥルドゥル
三(卍^o^)卍ドゥルドゥル
三(卍^o^)卍ドゥルドゥル
三(卍^o^)卍ドゥルドゥル
三(卍^o^)卍ドゥルドゥル
三(卍^o^)卍ドゥルドゥル
三(卍^o^)卍ドゥルドゥル
0035現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/09(金) 20:29:40.55ID:cRIUi70d
>>32 補足

まあ、言いたかったことは・・

>>26で1)の場合については、補集合が「R中稠密でない」から、
ディリクレ関数の変形で、基本は無理数点でf=0で、有理数の適当に好きな数を選んで、稠密にならないようにf=1にして、他の有理数をf=0にしておく。

選んだ数と数の隙間が、性質G“Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }”を満たす
(∵その隙間ではf≡0だから、lim sup y→x |(f(y) − f(x))/(y − x)|≡0 < +∞ は、明白で証明の必要もない )

逆に、「証明しました」というのも、おかしな話ということになる
上記の様に、人為的に任意の区間に不連続点を選べるから、言えるのは「不連続点と不連続点の隙間の区間が連続だ!」ということだけだし、それで尽くされている

0036132人目の素数さん垢版2018/02/09(金) 21:13:20.86ID:kBfmu0t4
>>21
>>>2)のR中稠密な場合は、定理1.7の命題は「 P∧ notQ → Q 」なので、証明不可能
>>>つまり、2)のR中稠密な場合においては、命題レベルで矛盾を含んでいるから、証明不可能
>>の2)の認識は間違いであることは飲み込めたでしょうか?
>
>いいえ。なお、ここは後で詳しく説明します
P∧¬Q->Q

P->Q
は同値な命題でありここを飲み込めていないのなら後の分析にコメントを付けても仕方ありません
(同値であるのは背理法によると理解することが出来ます)
0037132人目の素数さん垢版2018/02/09(金) 22:29:53.44ID:vPbEwl4H
結論 スレ主は命題の何たるかから勉強し直せ
0038132人目の素数さん垢版2018/02/09(金) 23:51:09.18ID:qQ+Q+Iw0
まず、性質G とかいうゴミのような書き方について整理しておく。

>命題P’:「Bf :Rの部分集合で、ある性質Gを持つとする」
>命題Q:「R中にある開区間の上で、性質Gを持つ。」

この2行から分かるように、「性質G」という言葉は「集合」を修飾する言葉になっている
(厳密には、R の部分集合を修飾する言葉になっている)。たとえば、

「 B_f は性質Gを持つ」「 R−B_f は性質Gを持たない」「ある開区間は性質Gを持つ」

などなど。従って、性質Gは R の部分集合 X を与えるごとに決まる命題だと考えるべきであり、
「性質G」ではなく「命題 G(X) 」という書き方をすべきである。すなわち、

「 G(B_f) は真である 」「 G(R−B_f) は偽である 」「ある開区間(a,b)に対してG((a,b))は真である」

といった書き方をすべきである。この場合、命題P',Q',Q は次のように書ける。
―――――――――――――――――――――――――――――――――――――――――――
G(X): R の部分集合 X に対して定義された、何らかの命題
命題P’:「Bf :Rの部分集合で、G(B_f)は真である」
命題Q’:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合であるとする。」
命題Q:「R中にある開区間(a,b)の上で、G((a,b))は真である」

P = P'∧Q'
―――――――――――――――――――――――――――――――――――――――――――
0039132人目の素数さん垢版2018/02/09(金) 23:52:33.75ID:qQ+Q+Iw0
では、命題 G(X) として何を採用すれば、定理1.7の正しい言い換えになるのか?既に見たように、

G(X): f は X の上でリプシッツ連続である

とした場合、――あるいは、同じことだが、

G(X):∃L>0, ∀x,y∈X [ |f(x)−f(y)|≦ L|x−y|]

とした場合、

命題Q:「R中にある開区間(a,b)の上で、G((a,b))は真である」

は命題Qa(前スレ>>583)に一致する。しかし、

命題P’:「Bf :Rの部分集合で、G(B_f)は真である」

がおかしなことになる。なぜなら、

命題P’:「Bf :Rの部分集合で、fはB_fの上でリプシッツ連続である」

となってしまうからだ。定理1.7では、このような仮定は置いていない。また、一般論としても、
fはB_fの上で必ずしもリプシッツ連続にはならない。従って、G(X) を上記のようにしてしまうと、
定理1.7 の言い換えにはならない。では、どんな G(X) にすれば、定理1.7 の正しい言い換えになるのか?
俺は知らないw
スレ主とかいうゴミクズが勝手に導入しただけだから、真相はスレ主のみが知っているw
0040132人目の素数さん垢版2018/02/09(金) 23:54:32.95ID:qQ+Q+Iw0
>>25
>ここで、ある性質Gで: f:R → R BfをRの部分集合で、Bf上関数fが連続とする

この部分を G(X) という書き方で書き直すと、次の2種類に解釈できる。

・ G(X): Bf 上関数fが連続
・ G(X): X 上関数fが連続

それぞれの場合において、

命題Q:「R中にある開区間(a,b)の上で、G((a,b))は真である」

という命題は次のようになる。

・ 命題Q:「R中にある開区間(a,b)の上で、Bf上関数fは連続である」
・ 命題Q:「R中にある開区間(a,b)の上で、(a,b)上関数fは連続である」

どちらのケースの場合も、定理1.7 とは別物になっているので、
定理1.7 の正しい言い換えになっていないwww

定理1.7 の言い換えをしたいわけではなく、単に G(X) の一例を出しただけであるようにも読めるが、
そんなことをするよりも前に、まずは定理1.7の正しい言い換えが得られるような正しい G(X) を提示せよ。
0041132人目の素数さん垢版2018/02/09(金) 23:55:50.60ID:qQ+Q+Iw0
>>25
ちなみに、

>R−Bfが、ベールの第一類集合で、R中稠密である。このような関数の例として、有名なトマエ関数およびその類似関数がある

この部分は間違っている。トマエ関数及びその類似品は、R−B_f が第一類集合になってないからだ。

俺の言いつけどおり、P∧ notQ や P’∧Q’2 が真になるような f の具体例を
1つ挙げようとしている姿勢は認めてやるが、トマエ関数やその類似品では、
そのような f の具体例になってない。

ゆえに、お前のロジックは破綻したままである。
0042132人目の素数さん垢版2018/02/09(金) 23:57:26.73ID:qQ+Q+Iw0
>>25
>一方で、1)の場合については、補集合が「R中稠密でない」から、
>“Q”(開集合の存在)を含意しているから、証明の必要もない。

間違っている。確かに、R−B_f が R の中で稠密でないという性質からは
命題 Qa が導出できるが、その証明は全く自明ではなく、定理1.7 と
ほとんど同じことをしなければならないのである。お前は

「稠密でないケースでは証明の必要がなく、自明に Qa が従う」

と勘違いしている。稠密でないケースでさえも、証明が難しいのであり、
そのときの証明法は定理1.7とほとんど同じなのである。


>2)の場合については、一般には、(例えば性質Gが“fが連続”)とした場合、
>稠密な補集合が存在し反例となるか、例外的に補集合が空集合になる。
>(反例は、1例をあげればいいが、「例外的に補集合が空集合になる」ことはきちんと別に証明が必要だ。)

定理1.7 により、「例外的に補集合が空集合になる」ことは自動的に証明されているw
0043132人目の素数さん垢版2018/02/10(土) 00:00:49.75ID:63yzK8xX
>>25
>3)だから、定理1.7のような、「補集合がベールの第一類集合→”ある開区間(a,b)⊂Bfが存在する”」
>という形の定理は、まっとうな数学の定理として、相応しくない。

意味不明。命題が命題レベルで矛盾しているということと、その命題が
「まっとうな数学の定理として相応しい形状になっているか」ということとは
全く違う話である。お前は当初、「命題レベルで矛盾している」と主張していたのである。
にも関わらず、今回は

「まっとうな数学の定理として相応しい形状になっていない」

などという印象論に終始している。印象論で定理1.7を批判したところで、
それは定理1.7が「命題として矛盾している」ことを意味しないので、
結局お前は、定理1.7について何も批判できてないことになる。
0044132人目の素数さん垢版2018/02/10(土) 00:02:26.15ID:63yzK8xX
あるいは、次のように言ってもよい。

お前が定理1.7を「ふさわしくない」と思う理由は、R−B_f で場合分けしたときに、
(2)のケースが「 P∧ notQ → Q 」という形をしているからである。
そのことだけを理由に、定理1.7を「ふさわしくない」と言っているのである。
ならば、同じことを定理Cに適用すると、次のようになる。
――――――――――――――――――――――――――――――――――――――――
定理C:
f:R → R が原点で微分可能ならば、f は原点で連続である。

スレ主:
前スレで導入した X_f を使って、R−X_f が R の中で稠密か否かで場合分けすると、

(1) f:R → R が原点で微分可能かつ R−X_f が R の中で稠密ではないならば、f は原点で連続である。
(2) f:R → R が原点で微分可能かつ R−X_f が R の中で稠密ならば、f は原点で連続である。

という2種類の命題に場合分けされる。しかし、R−X_f が R の中で稠密なら
f は原点で不連続なので、(2) は P∧ notQ → Q の形になってしまい、
まっとうな定理としての形になっていない。ゆえに、もともとの定理Cは
まっとうな数学の定理として、相応しくない。
――――――――――――――――――――――――――――――――――――――――

↑これがお前の言っていることである。これは一体どういうことだね?
0045132人目の素数さん垢版2018/02/10(土) 00:03:41.61ID:63yzK8xX
>>28
>その論法は、証明論としては、おかしい。
>定理1.7.2は、定理1.7の場合分けした中の一つの場合だから、定理1.7が真とすれば、普通は条件(仮定)命題は“真”だ。
>その場合分けの定理1.7.2の仮定も真で無ければならない。つまり、証明の場合分けは、仮定命題を細分化したものだからだ。
>「定理1.7の仮定 =定理1.7.1の仮定 ∨ 定理1.7.2仮定」 なのだから、定理1.7の仮定が真で定理1.7.2の
>仮定が偽はありえない。(論理学の基本)

間違っている。お前のその屁理屈を定理Cに適用すると、次のようになる。
――――――――――――――――――――――――――――――――――――――――
定理C:
f:R → R が原点で微分可能ならば、f は原点で連続である。

定理C1:
f:R → R が原点で微分可能かつ R−X_f が R の中で稠密ではないならば、f は原点で連続である。

定理C2:
f:R → R が原点で微分可能かつ R−X_f が R の中で稠密ならば、f は原点で連続である。

スレ主:
定理C2 は、定理Cの場合分けした中の1つの場合だから、定理Cが真とすれば、
普通は条件(仮定)命題は“真”だ。 その場合分けの定理C2の仮定も真で無ければならない。
つまり、証明の場合分けは、仮定命題を細分化したものだからだ。
「定理Cの仮定 =定理C1の仮定 ∨ 定理C2仮定」 なのだから、定理Cの仮定が真で
定理C2の仮定が偽はありえない。(論理学の基本)
――――――――――――――――――――――――――――――――――――――――

↑このように、お前にとっては、「定理C2の仮定が偽はありえない」という。
これは一体どういうことだね?
0046132人目の素数さん垢版2018/02/10(土) 00:07:17.51ID:63yzK8xX
>>28
>なお、命題「P’∧Q’2(開区間(a,b)⊂Bfが存在しない)→Q(ある開区間(a,b)⊂Bfが存在する)」は、
>数学の定理として証明できない。これは、自明だと思うので、詳細は省略する。

間違っている。証明可能である。仮定が偽であることを示せば証明したことになるからだ。もしくは、

https://rio2016.5ch.net/test/read.cgi/math/1514376850/26-30
https://rio2016.5ch.net/test/read.cgi/math/1514376850/47-48

の方針でも証明可能である。

ちなみに、「仮定が偽であることを証明する」という方針の場合には、
どのように証明が進むのかというと、

「定理1.7により、仮定 P’∧Q’2 は偽である」

と書くだけ。これで証明が終わる。
0047132人目の素数さん垢版2018/02/10(土) 00:34:14.04ID:63yzK8xX
きちんと読んでいなかったレスがあるので追記する。

>>27
>これを、もとの定理1.7について見るに、
>性質G“Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }”の補集合R−Bfが、
>(稠密で)開区間の反例として存在しうるのか、あるいは、「例外的に補集合が空集合になる」のか? そこは分らない。
>(>>25で述べたように、Gδ−Fσ理論が当てはまるなら、反例として存在しうるように思う。)

お前がそこで言っていることは結局、

「定理1.7が命題として真なのか偽なのかは現状のスレ主には分からない」

ということである。どうやらこのバカタレは、当初の主張である「命題レベルで矛盾」を
ようやく取り下げたらしい。
0048132人目の素数さん垢版2018/02/10(土) 00:38:39.88ID:63yzK8xX
>>27
>しかし、上記のような事情で、1)の場合については、証明の必要もないトリビアな主張だから、
>2)の場合だけをきちんと取り上げて、補集合R−Bfが、(稠密で)開区間の反例として存在しうるのか、
>あるいは、「例外的に補集合が空集合になる」のかだけを、定理として扱うべき。
>2)の場合を、”ある開区間(a,b)⊂Bfが存在する”という形で扱うべきではない。

ヘタクソな場合分けをするからそういう事態に陥るのであり、場合分けせずに
ダイレクトに証明すればいいだけの話である。そして、それを行っているのが定理1.7である。
あるいは、お前のその屁理屈を定理Cに適用すると、次のように言えてしまう。
――――――――――――――――――――――――――――――――――――――――
定理C:
f:R → R が原点で微分可能ならば、f は原点で連続である。

スレ主:
f が原点で連続かどうかで場合分けすると、

(1) f:R → R が原点で微分可能かつ f が原点で連続ならば、f は原点で連続である。
(2) f:R → R が原点で微分可能かつ f が原点で不連続ならば、f は原点で連続である。

という2種類の命題に場合分けされる。(1)は証明の必要もないトリビアな主張だから、
(2)だけを取り上げて、「 f:R → R が原点で微分可能かつ f が原点で不連続 」という
関数 f が存在しうるのか否かを、定理として扱うべきである。
(2)の場合を「 f は原点で連続である」という形で扱うべきではない。

すなわち、定理C は、まっとうな数学の命題としては、相応しくない。
――――――――――――――――――――――――――――――――――――――――

↑これがお前の言っていることである。スレ主にとって、定理Cはまっとうではないらしいw

これは一体どういうことだね?
0049132人目の素数さん垢版2018/02/10(土) 00:49:37.98ID:63yzK8xX
>>27
>元の定理1.7では
>2)の場合は、「P’∧Q’2(補集合が稠密)→P’∧Q’2(開区間(a,b)⊂Bfが存在しない)→Q(ある開区間(a,b)⊂Bfが存在する)」だ
>だから、仮定命題がT(真)のとき、必ず結論命題がF(偽)になる。
>命題全体が真になるためには、仮定命題がF(偽)で無ければならない。
>そういう命題は、まっとうな数学の命題としては、相応しくない。

お前がヘタクソな場合分けをするからそういう事態に陥るだけ。
「 P → Q 」の形をした如何なる定理であっても、イジワルな場合分けをすることで、
(2)に相当する「まっとうでない命題」が出現できる。次のようにすればよい。

―――――――――――――――――――――――――――――――――――――
定理:P → Q

スレ主:
上記の定理を証明したい。「 Q が成り立つ場合」「 ¬Q が成り立つ場合」で
場合分けすると、次のようになる。

(1) P∧Q → Q
(2) P∧¬Q → Q

(1)は証明の必要もないトリビアな主張だから、(2)だけを取り上げて、
仮定の「 P∧¬Q 」が真になりえるのか否かを、定理として扱うべきである。
(2)の場合を "P∧¬Q → Q" という形で扱うべきではない。

すなわち、上記の定理「 P → Q 」は、まっとうな数学の命題としては、相応しくない。
――――――――――――――――――――――――――――――――――――――

↑これがお前の言っていることである。
スレ主によれば、如何なる「 P → Q 」も、まっとうな数学の命題ではないらしいw

これは一体どういうことだね?
0050現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 07:30:58.68ID:N325TWRA
>>36
「ぷふ」さんですね

(引用)
「P∧¬Q->Q

P->Q
は同値な命題でありここを飲み込めていないのなら後の分析にコメントを付けても仕方ありません
(同値であるのは背理法によると理解することが出来ます)」
(引用終り)

>>18の「2)の認識は間違いであることは飲み込めたでしょうか?」は、それを言いたかったのか
その話は、P→Qという命題が成り立っているときに、外から¬Qを加えてP∧¬Q → Qとしても、元の命題P→Qを否定できないということなのでしょう?
それは分っていますよ

だが、いま問題にしているのは、
仮定命題Pを場合分けして、P = P1∨P2 と書けるという単純な話です

>>23より)
P1:R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密でない、とする。
P2:R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。

証明論における場合分けを否定されてもね
それを否定したら、教科書の何割かは書き直しでしょうね

以上
0052現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 07:35:26.87ID:N325TWRA
>>38-49

一杯書いて、ご苦労さん(^^
時間がないので、個別レスは後で

言いたいことは、>>50に尽きる

「いま問題にしているのは、
仮定命題Pを場合分けして、P = P1∨P2 と書けるという単純な話です

>>23より)
P1:R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密でない、とする。
P2:R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。

証明論における場合分けを否定されてもね
それを否定したら、教科書の何割かは書き直しでしょうね」

ってこと

以上
0053132人目の素数さん垢版2018/02/10(土) 10:13:54.81ID:r+r4mis1
仮定命題って何?
0054132人目の素数さん垢版2018/02/10(土) 10:42:40.62ID:VcDtRhPJ
>>50
>その話は、P→Qという命題が成り立っているときに、外から¬Qを加えてP∧¬Q → Qとしても、元の命題P→Qを否定できないということなのでしょう?
>それは分っていますよ
それはよかった
ずっとそれを主張していて
証明を書いた人に指摘されていたのを理解していない風だったので
>だが、いま問題にしているのは、
>仮定命題Pを場合分けして、P = P1∨P2 と書けるという単純な話です
また若干異なった主張になっていますが現在のあなたの主張は
``P2->¬Qが真であるときP1∨P2->Qは偽である''
ということでしょうか?
0055DJ学術 垢版2018/02/10(土) 11:37:04.65ID:63PiesU1
ビドュアル 面で 、色覚変異、快走、回想する数学も楽しいよ。
0056現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 20:33:12.45ID:N325TWRA
>>53
>仮定命題って何?

http://home.hiroshima-u.ac.jp/fujita/index-jap.html
藤田 聡 広島大学
http://home.hiroshima-u.ac.jp/fujita/Class/Kisoron/2009.html
計算機基礎論のページ(2009年度版)

http://home.hiroshima-u.ac.jp/fujita/Class/Kisoron/logic.pdf
命題論理 藤田聡 広島大学(2009年度版)
(抜粋)
P14
(d) 含意(implication)あるいは条件式
?いまp,qを命題とする
?p→qを「pならばq」であることを主張する言明であると定義する
?pを仮定(hypothesis)又は前提(premise)と呼び、qを結論(conclusion)または帰結(consequence)と呼ぶ
(引用終り)
0058132人目の素数さん垢版2018/02/10(土) 20:42:33.50ID:r+r4mis1
>>56
俺が聞いてるのは「仮定」じゃなく「仮定命題」ね
0059現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 21:02:57.63ID:N325TWRA
ああ、今見ると>>21〜32のレスで、職場で書いたレスが、コテハンとトリップを付け忘れているね
失礼しました。これ、全部私スレ主のです。
専用ブラウザで一度設定するとずっと入るが、新スレのときにしばしば最初忘れて書いていることがあるがご容赦
0061現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 21:13:37.26ID:N325TWRA
>>54
「ぷふ」さんですね

>ずっとそれを主張していて
>証明を書いた人に指摘されていたのを理解していない風だったので

それは失礼しました。私は、自分としては、最初から、条件を付け加えるつもりは無く、あくまで場合分けを主張していたつもりです。
例えば、スレ49 https://rio2016.5ch.net/test/read.cgi/math/1514376850/19 より下記
19 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/12/28(木) 07:49:07.81 ID:IsA0R4yK
(抜粋)
第一類集合に、R中で稠密な場合と、稠密でない場合とあるとする。
場合分けが必要だろう?
補集合R-Bfが、R中で稠密な場合を仮定として置きながら、結論で”f は(a; b) 上でリプシッツ連続である”を導くのは、なんか変
(引用終り)

つづく
0062現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 21:14:14.40ID:N325TWRA
>>61 つづき

>>仮定命題Pを場合分けして、P = P1∨P2 と書けるという単純な話です
>また若干異なった主張になっていますが現在のあなたの主張は
>``P2->¬Qが真であるときP1∨P2->Qは偽である''
>ということでしょうか?

そう難しく考えて貰う必要はないと思います。単純な証明論の場合分けですから
「仮定命題Pを場合分けして、P = P1∨P2 と書けるという単純な話です
>>23より)
P1:R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密でない、とする。
P2:R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」

なお、下記 命題論理 藤田聡 広島大学のPDFの”proof by cases”ご参照

http://home.hiroshima-u.ac.jp/fujita/Class/Kisoron/logic.pdf
命題論理 藤田聡 広島大学(2009年度版)
(抜粋)
<証明手法>
P85
proof by cases
(p1∨p2∨・・・∨pn)→q
を示すのに
(p1→q)∧(p2→q)∧・・・∧(pn→q)
を示す
(引用終り)

つづく
0063現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 21:16:37.27ID:N325TWRA
>>62 つづき

>>22-23の記法に戻します
(抜粋)
定理1.7のさらに言い換え版2 (前スレ>>591)
<条件(仮定)>
・命題P’:「Bf :Rの部分集合で、ある性質Gを持つとする」
・命題Q’:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合であるとする。」
<結論>
・命題Q:「この条件下で、R中にある開区間の上で、性質Gを持つ。」(この部分は、”ある開区間(a,b)⊂Bfが存在する”と書ける)
(なお、当然ながら、R−Bfは性質NGを持つ。NGは、Gの否定である。当然GとNGは、相反する)

ベールの第一類集合R−Bfについて、
1)R中稠密でない場合、
2)R中稠密な場合
に、二分できる。

1)の場合について、
命題Q’1:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密でない、とする。」
2)の場合について、
命題Q’2:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
(引用終り)

2)の場合について、書き直すと
<条件(仮定)>
・命題P’:「Bf :Rの部分集合で、ある性質Gを持つとする」
・命題Q’2:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
<結論>
・命題Q:「この条件下で、R中にある開区間の上で、性質Gを持つ。」

ここで、仮定命題のQ’2:”Bfの補集合が、ベールの第一類集合で、R中稠密である”ことから、すでに「R中に、性質Gを持つ開区間は取れない」が、含意されています
なので、「P’∧Q’2 → ¬Q」がもっとも素直な結論。逆に「P’∧Q’2 → Q」を、証明することは、”無理筋”だという主張です。

以上
0065132人目の素数さん垢版2018/02/10(土) 21:43:20.76ID:r+r4mis1
>>60
>私が言っているのは、「仮定命題」:=「仮定」(藤田聡)
「仮定命題」は「命題」や否や?
0066132人目の素数さん垢版2018/02/10(土) 21:55:51.52ID:63yzK8xX
>>61
>第一類集合に、R中で稠密な場合と、稠密でない場合とあるとする。
>場合分けが必要だろう?
>補集合R-Bfが、R中で稠密な場合を仮定として置きながら、結論で”f は(a; b) 上でリプシッツ連続である”を導くのは、なんか変

その屁理屈は過去スレで既に論破しているので通用しない。本当にゴミクズだなお前。いい加減にしろや。

過去スレの繰り返しになるが、改めて指摘しよう。
お前の その屁理屈を定理Cに適用すると、次のようになる。
――――――――――――――――――――――――――――――――――――――――
定理C:
f:R → R が原点で微分可能ならば、f は原点で連続である。

スレ主:
f が原点で連続な場合と、そうでない場合とがある。
場合分けが必要だろ?
f が原点で不連続な場合を仮定として置きながら、結論で " f は連続 " を道部くのは、なんか変
ゆえに、定理C は数学の命題としてふさわしい形ではない。
――――――――――――――――――――――――――――――――――――――――

↑これがお前の言っていることだよ。これは一体どういうことだね?
0067132人目の素数さん垢版2018/02/10(土) 21:57:29.74ID:63yzK8xX
>>61

あるいは、次のようにも言える。
――――――――――――――――――――――――――――――――――――――――
定理C:
f:R → R が原点で微分可能ならば、f は原点で連続である。

スレ主:
過去スレで導入した X_f を使ってみる。
R−X_f がR中で稠密なら、f は原点で不連続になることに注意せよ。

さて、R−X_f がR中で稠密な場合と、稠密でない場合とがある。
場合分けが必要だろう?
補集合 R−X_f が、R中で稠密な場合を仮定として置きながら、結論で”f は原点で連続である”を導くのは、なんか変
ゆえに、定理C は数学の命題としてふさわしい形ではない。
――――――――――――――――――――――――――――――――――――――――

↑これがお前の言っていることだよ。これは一体どういうことだね?
0068132人目の素数さん垢版2018/02/10(土) 21:59:47.10ID:63yzK8xX
>>63
>ここで、仮定命題のQ’2:”Bfの補集合が、ベールの第一類集合で、R中稠密である”ことから、
>すでに「R中に、性質Gを持つ開区間は取れない」が、含意されています
>なので、「P’∧Q’2 → ¬Q」がもっとも素直な結論。逆に「P’∧Q’2 → Q」を、証明することは、”無理筋”だという主張です。

全く無理筋ではない。仮定が偽であることを証明すればいいだけ(>>46)。
あるいは、お前の屁理屈を定理Cに適用すると、次のようになる。
――――――――――――――――――――――――――――――――――――――――
定理C:
f:R → R が原点で微分可能ならば、f は原点で連続である。

スレ主:
f が原点で連続な場合と、そうでない場合とがある。場合分けが必要だろ?
しかし、f が原点で不連続な場合は、

「 fが原点で微分可能 ∧ f は原点で不連続 → fは原点で不連続 」

がもっとも素直な結論。逆に

「 fが原点で微分可能 ∧ f は原点で不連続 → fは原点で連続 」

を証明することは "無理筋" である。
ゆえに、定理C は数学の命題としてふさわしい形ではない。
――――――――――――――――――――――――――――――――――――――――

↑これがお前の言っていることだよ。これは一体どういうことだね?
0069132人目の素数さん垢版2018/02/10(土) 22:03:39.00ID:63yzK8xX
くどいようだが、スレ主の屁理屈を一般の「 P → Q 」に適用すると、次のようになる。
――――――――――――――――――――――――――――――――――
定理:P → Q

スレ主:
上記の定理を証明したい。
Q が成り立つ場合と、¬Q が成り立つ場合とがある。
場合分けが必要だろ?
しかし、¬Q が成り立つ場合を仮定として置きながら、結論で「 Q 」を導くのは、なんか変

ゆえに、上記の定理「 P → Q 」は、数学の命題としてふさわしい形ではない。
――――――――――――――――――――――――――――――――――

あるいは、次のようにもなる。
――――――――――――――――――――――――――――――――――
定理:P → Q

スレ主:
上記の定理を証明したい。
Q が成り立つ場合と、¬Q が成り立つ場合とがある。
場合分けが必要だろ?
しかし、¬Q が成り立つ場合は、「 P∧¬Q → ¬Q 」がもっとも素直な結論。
逆に「 P∧¬Q → Q 」を証明することは "無理筋" である。

ゆえに、上記の定理「 P → Q 」は、数学の命題としてふさわしい形ではない。
――――――――――――――――――――――――――――――――――

↑これがお前の言っていることだよ。これは一体どういうことだね?
0073132人目の素数さん垢版2018/02/10(土) 22:18:14.29ID:r+r4mis1
>>71
>「仮定命題」⊂「命題」
命題の定義を述べよ
0074現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 22:18:27.26ID:N325TWRA
>>72 つづき

>>42
>定理1.7 により、「例外的に補集合が空集合になる」ことは自動的に証明されているw

それは言えないだろう?
>>63 に書いたように、
”仮定命題のQ’2:”Bfの補集合が、ベールの第一類集合で、R中稠密である”ことから、すでに「R中に、性質Gを持つ開区間は取れない」が、含意されています
なので、「P’∧Q’2 → ¬Q」がもっとも素直な結論。逆に「P’∧Q’2 → Q」を、証明することは、”無理筋”だという主張です。”

なお、仮定が偽な命題は、論理学としは成り立っても、それを教科書や論文に書いては、話がおかしい
前スレ >>562 桂田祐史先生 数理リテラシー 例1.6 ”「1 + 1 = 3 → √2は有理数」は真。”などと書かれてもね〜
「1 + 1 = 3 → 偽」なら数学としては分る。まあ、文学表現では「二人が力を合わせれば、1 + 1 = 3 だ」などというかもしれませんがね

なお、”空集合”について
前提を実数の範囲に限定しているなら、「x^2 = m で、x = ±√m 」は正しくない命題。(mの正負に応じ、場合分けすべき)
一方、「x^2 = m で m が負ならば、実数解は存在しない(空集合)」は、正しい命題。
なので、”空集合”を言いたいなら、場合分け命題できちんと証明すべき

<参考>
http://nalab.mind.meiji.ac.jp/~mk/lecture/
桂田祐史の講義のサポート・ページ
http://nalab.mind.meiji.ac.jp/~mk/lecture/literacy-2017/logic.pdf
数理リテラシー (2017年度) 講義ノート「Part 1 論理」
(抜粋)
P11
例1.6 「1 + 1 = 3 → √2は有理数」は真。
(引用終り)

つづく
0076現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 22:19:47.00ID:N325TWRA
>>75 つづき

>>45 & >>67-68

その定理Cは、的外れ
私が言っていることは、>>62の命題論理 藤田聡 広島大学
(抜粋)
<証明手法>
P85
proof by cases
(p1∨p2∨・・・∨pn)→q
を示すのに
(p1→q)∧(p2→q)∧・・・∧(pn→q)
を示す
(引用終り)

ってこと。定理Cは、場合分けとは違う

つづく
0077現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 22:22:57.09ID:N325TWRA
>>76 つづき

>>46
>間違っている。証明可能である。仮定が偽であることを示せば証明したことになるからだ。

ここは、上記 >>74 ”「1 + 1 = 3 → √2は有理数」は真。”ご参照

>「定理1.7により、仮定 P’∧Q’2 は偽である」
>と書くだけ。これで証明が終わる。

ここは、上記 >>76 場合分けご参照。
なお、証明の場合分けに対し、その論法は典型的な循環論法だろう

つづく
0078現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 22:23:35.06ID:N325TWRA
>>77 つづき

>>47
>「定理1.7が命題として真なのか偽なのかは現状のスレ主には分からない」
>ということである。どうやらこのバカタレは、当初の主張である「命題レベルで矛盾」を
>ようやく取り下げたらしい。

違うよ。定理1.7は、数学の命題として、適切で無いという主張は取り下げていないよ

これと、”(稠密で)開区間の反例として存在しうるのか、あるいは、「例外的に補集合が空集合になる」のか? そこは分らない。”という主張とは別物だよ
(上述の通り)

つづく
0080現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/10(土) 22:28:11.64ID:N325TWRA
>>73
>>「仮定命題」⊂「命題」
>命題の定義を述べよ

>>56より
http://home.hiroshima-u.ac.jp/fujita/Class/Kisoron/logic.pdf
命題論理 藤田聡 広島大学(2009年度版)
(抜粋)
P14
(d) 含意(implication)あるいは条件式
いまp,qを命題とする
p→qを「pならばq」であることを主張する言明であると定義する
pを仮定(hypothesis)又は前提(premise)と呼び、qを結論(conclusion)または帰結(consequence)と呼ぶ
(引用終り)

以上
0081132人目の素数さん垢版2018/02/10(土) 22:28:37.86ID:63yzK8xX
>>72
>それは言えないだろう?

言える。定理1.7 により、R−B_f が第一類集合なら、f はある開区間の上でリプシッツ連続なので、

「 R−B_f が第一類集合かつ R−B_f はRの中で稠密 」

という性質を満たす f は存在しないことになる。すなわち、P’∧Q’は偽である。
ゆえに、「 P’∧Q’→ Q 」は真である。

無理筋でも何でもない。お前がバカなだけ。

>>76
>定理Cは、場合分けとは違う

・ fが原点で連続である場合と、そうでない場合とがある。 場 合 分 け が 必 要 だ ろ ?
・ R−X_f がR中で稠密である場合と、そうでない場合とがある。 場 合 分 け が 必 要 だ ろ ?

前者のやり方で場合分けした場合、f が原点で不連続な場合に結論で "fは連続" を導くのは、なんか変。
後者のやり方で場合分けした場合、R−X_f がR中で稠密な場合に結論で "fは連続" を導くのは、なんか変。
ゆえに、定理C は数学の命題としてふさわしい形をしていない。

これは一体どういうことだね?
0082132人目の素数さん垢版2018/02/10(土) 22:31:59.64ID:63yzK8xX
>>77
>>「定理1.7により、仮定 P’∧Q’2 は偽である」
>>と書くだけ。これで証明が終わる。
>ここは、上記 >>76 場合分けご参照。
>なお、証明の場合分けに対し、その論法は典型的な循環論法だろう

それが循環論法に見えるのなら、お前にとって、
――――――――――――――――――――――――――――――――――――
定理C2:
f が原点で微分可能であり、f が原点で不連続ならば、f は原点で連続である
――――――――――――――――――――――――――――――――――――
という定理は一体どうやって証明するつもりだね?
この定理C2 は、仮定が偽の命題であるから、仮定が偽であることを示せば証明が終わるわけだが、
そのためにお前は、いったいどのような論法を使って仮定が偽であることを示すつもりだね?

普通の人間は、「定理C により、仮定は偽である」と書けば終わりだが、お前にとってこれは循環論法なんだろ?
だったら、いったいどのような論法を使って仮定が偽であることを示すつもりだね?
0083132人目の素数さん垢版2018/02/10(土) 22:33:55.50ID:63yzK8xX
>>79
>その定理Cの例示は、証明論の場合分けを曲解しているだけのことだろ

・ 定理C について、fが原点で連続である場合と、そうでない場合とがある。 場 合 分 け が 必 要 だ ろ ?
・ 定理C について、R−X_f がR中で稠密である場合と、そうでない場合とがある。 場 合 分 け が 必 要 だ ろ ?

↑これが曲解に見えるのなら、お前が言うところの

・ 定理1.7 について、R−B_f がR中で稠密である場合と、そうでない場合とがある。 場 合 分 け が 必 要 だ ろ ?

↑これは一体どうして曲解ではないのかね?書き並べてみようか?

・ 定理C  について、R−X_f がR中で稠密である場合と、そうでない場合とがある。 場 合 分 け が 必 要 だ ろ ?
・ 定理1.7 について、R−B_f がR中で稠密である場合と、そうでない場合とがある。 場 合 分 け が 必 要 だ ろ ?

↑両者の違いは一体どこにあるのだね?

スレ主によれば、定理C の場合は曲解なのに、定理1.7 の場合は曲解ではないという。バカじゃねーの。
0084132人目の素数さん垢版2018/02/10(土) 22:50:09.86ID:r+r4mis1
>>80
零点
命題の定義を全く述べてないので
0085132人目の素数さん垢版2018/02/10(土) 22:53:08.04ID:r+r4mis1
結論 スレ主は命題の定義すら知らないアホでした
0086132人目の素数さん垢版2018/02/10(土) 23:13:26.51ID:63yzK8xX
同じことの繰り返しになるが、追記する。

>>50
>だが、いま問題にしているのは、
>仮定命題Pを場合分けして、P = P1∨P2 と書けるという単純な話です

定理C の場合にも、
―――――――――――――――――――――――
P: f は原点で微分可能
Q: f は原点で連続

P1:f は原点で微分可能かつfは原点で連続
P2:f は原点で微分可能かつfは原点で不連続
―――――――――――――――――――――――

と置けば、P = P1∨P2 と書けるという単純な話である。そして、

「 P2 の場合に「 P2 → Q 」を導くのは、なんか変。ゆえに、定理C は数学の命題としてふさわしい形ではない」

と言っているのがお前である。お前はここで「そのような場合分けは曲解である」などと批判しているが、
それは単なる印象論であり、「そのような場合分けは数学的に矛盾している」と言えているわけではないので、
何の批判にもなっていない。それとも、お前にとって P = P1∨P2 は成り立たないのか?
つまり、お前にとって P = P1∨P2 は数学的に矛盾しているのか?
0087132人目の素数さん垢版2018/02/10(土) 23:16:22.25ID:VcDtRhPJ
>>62
>そう難しく考えて貰う必要はないと思います。単純な証明論の場合分けですから
いえ
別に難しく考えているわけではなく
あなたの主張のどこが間違いかを指摘するかに必要なことをお尋ねしているだけのことです
0088132人目の素数さん垢版2018/02/10(土) 23:18:10.97ID:VcDtRhPJ
あなたを強烈に批判している件の証明を書いた人は
正鵠を射る指摘しかしていませんよ
0089132人目の素数さん垢版2018/02/10(土) 23:20:18.87ID:63yzK8xX
>>50
>P1:R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密でない、とする。
>P2:R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。

>証明論における場合分けを否定されてもね
>それを否定したら、教科書の何割かは書き直しでしょうね

お前のその言い分は、定理C にも完全に適用できるw
―――――――――――――――――――――――――――
P1:f は原点で微分可能で、fは原点で連続である、とする
P2:f は原点で微分可能で、fは原点で連続でない、とする
―――――――――――――――――――――――――――

お前は、このような場合分けを「曲解である」と言って否定しているが、
証明論における場合分けを否定されてもねw
それを否定したら、教科書の何割かは書き直しでしょうねw
実際、上記のように作った P1, P2 に対して、P=P1∨P2 は確実に成り立ってるからね。それを否定されてもねw

書き並べてみようか?
――――――――――――――――――――――――――――――――――――――――
P1:R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密でない、とする。
P2:R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。

P1:f は原点で微分可能で、fは原点で連続である、とする
P2:f は原点で微分可能で、fは原点で連続でない、とする
――――――――――――――――――――――――――――――――――――――――

どちらのケースでも、「仮定命題Pを場合分けして、P = P1∨P2 と書けるという単純な話です」

「証明論における場合分けを否定されてもね」

「それを否定したら、教科書の何割かは書き直しでしょうね 」
0091132人目の素数さん垢版2018/02/10(土) 23:45:51.34ID:VcDtRhPJ
>>61
>それは失礼しました。私は、自分としては、最初から、条件を付け加えるつもりは無く、あくまで場合分けを主張していたつもりです。
場合分けという手法も
単に仮定に条件を付け加えて分類しているだけのことです
P->Qの仮定にP∧¬Q->Qと条件を付け加えてもP->Qと同値であって
付け加える価値はないし付け加えても何の問題もないということを
件の証明を書いた人は再三指摘していたわけです
0092132人目の素数さん垢版2018/02/10(土) 23:47:51.67ID:VcDtRhPJ
>>90
君は黙っていた方が他の人々同様に頭の悪いことを露見せずに済むと思いますよ
0094132人目の素数さん垢版2018/02/10(土) 23:57:41.49ID:jPjDkYQd
>>88
> あなたを強烈に批判している件の証明を書いた人は
> 正鵠を射る指摘しかしていませんよ

ちなみにその人の意見は オマエ=ぷ の結論『時枝記事の確率は0』に真っ向から対立してるよw
0095132人目の素数さん垢版2018/02/11(日) 00:22:30.80ID:pNRQvEC+
時枝不成立なんて未だに考えてるアホがいるんだなw
命題の定義すら知らないサル以外にもw
0097現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/11(日) 10:04:02.65ID:8wcq3017
>>96

>>56より
http://home.hiroshima-u.ac.jp/fujita/Class/Kisoron/logic.pdf
命題論理 藤田聡 広島大学(2009年度版)
(抜粋)
P14
(d) 含意(implication)あるいは条件式
いまp,qを命題とする
p→qを「pならばq」であることを主張する言明であると定義する
pを仮定(hypothesis)又は前提(premise)と呼び、qを結論(conclusion)または帰結(consequence)と呼ぶ
(引用終り)

命題とは、p→qを「pならばq」であることを主張する言明であると定義したときの、PとQである
0098132人目の素数さん垢版2018/02/11(日) 10:16:26.12ID:pNRQvEC+
>>97
>命題とは、p→qを「pならばq」であることを主張する言明であると定義したときの、PとQである
零点
0099現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/11(日) 10:37:52.30ID:8wcq3017
>>98
ありがとう

命題とは、p→qを「pならばq」であることを主張する言明であると定義したときの、PとQである

PとQを、命題と呼ぶのは、歴史の産物でしかない

https://ja.wikipedia.org/wiki/%E5%91%BD%E9%A1%8C
命題

命題(めいだい、英語: proposition)とは、論理学において判断を言語で表したもので、真または偽という性質をもつもの[1][2]。また数学で、真偽の判断の対象となる文章または式。定理または問題のこと[3]。西周による訳語の一つ[4][5]。

厳密な意味での命題の存在は、「意味」の存在と同様に、疑問を投げかける哲学者もいる。また、「意味」の概念が許容される場合にあっても、その本質は何であるかということにはなお議論のあるところである。古い文献では、語の集まりあるいはその語の集まりの表す「意味」という意味で命題という術語を用いているかどうかということが、つねに十分に明らかにされているわけではなかった[6]。

現在では、論争や存在論的な含みを持つことを避けるため、ある解釈の下で(真か偽のいずれであるかという)真理の担い手となる記号列自体について述べる時は、「命題」という代わりに「文 (sentence)」という術語を用いる。ストローソンは「言明 ("statement")」 という術語を用いることを提唱した。
(引用終り)
0100現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/11(日) 10:39:43.14ID:8wcq3017
>>42 戻る

>>一方で、1)の場合については、補集合が「R中稠密でない」から、
>>“Q”(開集合の存在)を含意しているから、証明の必要もない。

>「稠密でないケースでは証明の必要がなく、自明に Qa が従う」
>と勘違いしている。稠密でないケースでさえも、証明が難しいのであり、
>そのときの証明法は定理1.7とほとんど同じなのである。

稠密集合:位相空間 X の部分集合 A が X において稠密であるとは、X の各元 x に対し、x の任意の近傍が A の元を少なくとも一つ含むことをいう。(下記)
なので、稠密でないケースでは、「X のある元 x に対し、x のある近傍で ”A の元を一つも含まないもの”が存在する」
その近傍内は、全てBf であり、性質G:=“Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }”を満たす
この近傍内に、定理1.7のある開区間を取れば良い
QED

https://ja.wikipedia.org/wiki/%E7%A8%A0%E5%AF%86%E9%9B%86%E5%90%88
稠密集合
(抜粋)
厳密な定義
位相空間 X の部分集合 A が X において稠密であるとは、X の各元 x に対し、x の任意の近傍が A の元を少なくとも一つ含むことをいう。
(引用終り)
0101現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/11(日) 10:41:11.25ID:8wcq3017
>>81
”言える。定理1.7 により、R−B_f が第一類集合なら、f はある開区間の上でリプシッツ連続なので、
「 R−B_f が第一類集合かつ R−B_f はRの中で稠密 」
という性質を満たす f は存在しないことになる。すなわち、P’∧Q’は偽である。
ゆえに、「 P’∧Q’→ Q 」は真である。”

だから、それだったら、
1)稠密でない場合は自明に定理1.7が、成立(上記 >>100 ご参照)
2)稠密でない場合は自明に定理1.7の仮定が、不成立(仮定が不成立の場合は、証明の必要さえない)
ということですね
0102現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/11(日) 10:42:14.77ID:8wcq3017
>>82-83 & >>86 & >>89
>定理C2:
>f が原点で微分可能であり、f が原点で不連続ならば、f は原点で連続である

その定理C2は、的外れ
私が言っていることは、>>62の命題論理 藤田聡 広島大学のproof by cases(>>76

f が原点で微分可能の場合分けには、
「f が原点で不連続ならば」は存在しない
0106現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/11(日) 10:49:29.21ID:8wcq3017
>>101 訂正

2)稠密でない場合は自明に定理1.7の仮定が、不成立(仮定が不成立の場合は、証明の必要さえない)
 ↓
2)稠密な場合は自明に定理1.7の仮定が、不成立(仮定が不成立の場合は、証明の必要さえない)

間違いが多いな。息をしたからかな(^^
0107132人目の素数さん垢版2018/02/11(日) 11:14:19.86ID:pNRQvEC+
>>99
何が言いたいのか意味不明
命題の定義(だけ)を述べよ、余計な付け足しは減点対象となることを注意しておく
0108132人目の素数さん垢版2018/02/11(日) 11:20:31.40ID:pNRQvEC+
スレ主の成績表
本試験 零点
追試1回目 零点
追試2回目 零点

コピペしてこのザマ
0109132人目の素数さん垢版2018/02/11(日) 11:23:19.46ID:sJak3l1o
>>100
>その近傍内は、全てBf であり、性質G:=“Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }”を満たす
>この近傍内に、定理1.7のある開区間を取れば良い
>QED

息をするように間違えるゴミクズ。問題外。

(a,b)⊂Bf なる開区間を取ったとする。
f が (a,b) 上でリプシッツ連続になるかどうかを考えたい。すなわち、

∃L>0, ∀y,z∈(a,b) [ |f(z)−f(y)|≦L|z−y|] … (1)

が成り立つかどうかを考えたい。まず、(a,b)⊂Bf であるから、任意の x∈(a,b) に対して
Af(x)<+∞ は言えている。よって、Af(x)<N を満たす正の実数 N を1つ取れば、y が x に十分近いところでは

|f(y)−f(x)|≦ N|y−x|

が成り立つことが言える。このことを、やや雑な書き方で表現すると、感覚的には

「 y が x に十分近ければ |f(y)−f(x)|≦ Af(x)|y−x|が成り立つ 」

ということである。しかし、Af(x) は x∈(a,b) を動かすごとに「有限値」であるに過ぎないので、
x∈(a,b) を動かしたときの Af(x) が (1) のような一様に有界な L で抑えられるという保証はどこにもない。
ゆえに、単に (a,b)⊂Bf なる開区間を取っただけでは、(1) が成り立つとは言えず、
リプシッツ連続な開区間が取れるかどうかは分からなくなる。

だから、お前のやり方では何も言えてない。ゴミ。

[続く]
0110132人目の素数さん垢版2018/02/11(日) 11:25:05.68ID:sJak3l1o
[続き]

実際の証明法は、(a,b)⊂Bf なる開区間を取ったとき、B_f ⊂ ∪_{N,M≧1} B_{N,M} と合わせて

(a,b) ⊂ ∪_{N,M≧1} B_{N,M}

ということになるので、ベールのカテゴリ定理の開区間版を使うことにより、ある B_{N,M} は内点を持つことになる。
特に、(c,d)⊂B_{N,M} なる開区間 (c,d) が取れる。必要なら(c,d)内の更に小さな区間に差し替えることで、
d−c<1/M かつ(c,d)⊂B_{N,M} が成り立つとしてよい。このとき、f は (c,d) 上でリプシッツ連続になることが言える。

(a,b)⊂B_f のときと (c,d)⊂B_{N,M} とで何が違うのかというと、前者では x∈(a,b) ごとに Af(x) が
「有限値」であるに過ぎず、Af(x) が一様に有界かどうかが分からなかったのに対し、後者では
x∈(c,d) ごとに Af(x)≦N となっているので、Af(x) が一様に有界なのであり、それゆえに上手く行くのである。

このような事情をお前は全く理解しておらず、単に「 (a,b)⊂B_f 」とするだけで
リプシッツ連続の証明が終わると思い込んでいるバカがお前である。問題外。レベルが低すぎる。

ちなみに、上記の手法をより一般的な状況下で使ったのが定理1.7である。
0111132人目の素数さん垢版2018/02/11(日) 11:33:09.67ID:sJak3l1o
>>102
> f が原点で微分可能の場合分けには、
>「f が原点で不連続ならば」は存在しない

詭弁である。「仮定が偽でなる」ことと、「場合分けとして存在しない」こととを混同している。
―――――――――――――――――――――――
P: f は原点で微分可能
Q: f は原点で連続

P1:f は原点で微分可能かつfは原点で連続
P2:f は原点で微分可能かつfは原点で不連続

P = P1∨P2
―――――――――――――――――――――――

↑ほらね。「場合分け P2 」は存在してるだろ? P2 は偽になっているだけであって、
場合分けとしては確実に「場合分け P2 」が存在してるだろ?
0112132人目の素数さん垢版2018/02/11(日) 11:37:15.16ID:sJak3l1o
>>102
それとも、お前が定理Cを場合分けすると、次のようになるわけか?
―――――――――――――――――――――――
P: f は原点で微分可能
Q: f は原点で連続

P1:f は原点で微分可能かつfは原点で連続

P = P1
―――――――――――――――――――――――

これのどこが「場合分け」なんだよw
P という仮定から出発してまだ何もしてないのに、
どうしてその時点での場合分けが P1 だけになるんだよw
P2 が起こり得ないことを証明しなければ P = P1 は示せないだろw
なんで勝手に P2 が消滅して P1 だけになって P = P1 になってるんだよw

P という仮定から出発して、その時点で無意識のうちに定理Cを適用してしまって、
それゆえにスレ主が自分勝手に P2 というケースを抹消してるだけだろw
0113132人目の素数さん垢版2018/02/11(日) 11:40:52.85ID:sJak3l1o
>>112 のような芸当が許されるなら、俺だって次のようにするよw
―――――――――――――――――――――――――――――――
P: R−B_f は第一類集合
Q: f はある開区間の上でリプシッツ連続

P1:f は原点で微分可能かつ f はある開区間の上でリプシッツ連続

P = P1
―――――――――――――――――――――――――――――――

↑なぜこの "場合分け" で P2 に相当するケースが存在しないのかというと、
お前の屁理屈と同様に、P という仮定から出発して、その時点で無意識のうちに
定理1.7を適用することで、P2 に相当するケースを抹消したからであるw

これがお前のやっていることだよ。論理がメチャクチャ。
0114132人目の素数さん垢版2018/02/11(日) 11:49:19.53ID:sJak3l1o
くどいようだが、もう一度言うよ。
―――――――――――――――――――――――
P: f は原点で微分可能
Q: f は原点で連続

P1:f は原点で微分可能かつfは原点で連続
P2:f は原点で微分可能かつfは原点で不連続

P = P1∨P2
―――――――――――――――――――――――
このように、定理C での上記の場合分けにおいて、「 場合分け P2 」というケースは確実に存在している。
P2 という仮定が偽になっているだけであって、場合分けとしての「 場合分け P2 」は確実に存在している。
そして、お前は次のように主張するのである。

「 P2 の場合に「 P2 → Q 」を導くのは、なんか変。ゆえに、定理C は数学の命題としてふさわしい形ではない」

しかし、これはお前にとって都合が悪いので、お前は次のような詭弁を使ったのだった。

「定理Cでは "場合分けP2" というケースそのものが存在しない」
0115132人目の素数さん垢版2018/02/11(日) 11:51:58.03ID:sJak3l1o
しかし、"場合分けP2" そのものが存在しないのであれば、
お前にとっての定理Cの場合分けは次のようになってしまう。
―――――――――――――――――――――――
P: f は原点で微分可能
Q: f は原点で連続

P1:f は原点で微分可能かつfは原点で連続

P = P1
―――――――――――――――――――――――
これのどこが「場合分け」なんだよw
P という仮定から出発してまだ何もしてないのに、どうしてその時点での場合分けが P1 だけになるんだよw
P = P1 という等号にしたって、P2 が偽であることを証明しなければ P = P1 は出て来ないだろw
なんで何もしてない段階で勝手に P2 が消滅して P1 だけになってるんだよw
P という仮定から出発して、その時点で無意識のうちに定理Cを適用してしまって、
それゆえにスレ主が勝手に P2 というケースを抹消してるだけだろw

そんな芸当が許されるなら、俺だって定理1.7を適用することで次のようにするぞ。
―――――――――――――――――――――――――――――――
P: R−B_f は第一類集合
Q: f はある開区間の上でリプシッツ連続

P1:f は原点で微分可能かつ f はある開区間の上でリプシッツ連続

P = P1
(P2 に相当するケースは存在しない)
―――――――――――――――――――――――――――――――

…というように、スレ主とかいうゴミクズは論理が滅茶苦茶である。キチガイ。問題外。レベルが低すぎる。
0116132人目の素数さん垢版2018/02/11(日) 12:13:43.23ID:sJak3l1o
少し戻るが、>>109 について1つ補足しておこう。

(a,b)⊂Bf なる開区間を取ったとする。f が (a,b) 上でリプシッツ連続になるかどうかを考えたい。すなわち、

∃L>0, ∀y,z∈(a,b) [ |f(z)−f(y)|≦L|z−y|] … (1)

が成り立つかどうかを考えたい。つまり、我々のここでの目標は、

「 (a,b)⊂Bf という条件のもとで、(1)を示したい 」

ということである。
――――――――――――――――――――――――――――――――
ここで、もし(1)が成り立つなら何が起きるのかを、「先に」考えてみよう。
もし(1)が成り立つなら、簡単な考察により、

∀x∈(a.b) [ A_f(x)≦L ]

が成り立つことが分かる。すなわち、Af(x) は (a,b) 上で
一様に L で抑えられることになる。
――――――――――――――――――――――――――――――――
従って、(a,b)⊂Bf という条件のもとで(1)が証明できた暁には、

「 Af(x) は (a,b) 上で一様に有界である」

ことが自動的に証明できることになる。従って、我々は少なくとも、Af(x) が (a,b) 上で
一様に有界であるような (a,b) を B_f の中から選ばなければならないことになる。
しかし、出発点である (a,b)⊂Bf という条件では、任意の x∈(a,b) に対して Af(x) が「有限値」であることが
分かっているだけであって、Af(x) が (a,b) 上で一様に有界であるかどうかは分からない。(a,b) の幅を
さらに狭くした(a',b')の上でも、Af(x) が(a',b')上で一様に有界であるかどうかはわからない。
なぜなら、B_f という集合は、その各点 x で Af(x) が「有限値」と言っているに過ぎないからだ。
0117132人目の素数さん垢版2018/02/11(日) 12:21:20.54ID:sJak3l1o
実際には、>>110 の手法によって、Af(x) が一様に有界であるような開区間が B_f の中から取れるし、
f はその開区間の上でリプシッツ連続になる。しかし、まさにその

「 Af(x) が一様に有界であるような開区間が B_f の中から取れる 」

ということを言うための手順が全く自明ではなく、そのやり方は >>110 で既に見たとおりであり、

B_f ⊂ ∪_{N,M≧1} B_{N,M}

という包含を使う必要があるし、さらにベールのカテゴリ定理(の開区間版)も必要である。
つまり、スレ主が思っているほど簡単には済まないのである。

もし>>110の手法を使わずに、「 Af(x) は (a,b) 上で一様に有界である」 という性質を満たす
(a,b)が B_f の中から簡単に選べると思うなら、その方法をここに書いてみたまえゴミクズ君。
0118132人目の素数さん垢版2018/02/11(日) 16:10:52.71ID:lsbQUPFq
>>105
>>101,106の
>1)稠密でない場合は自明に定理1.7が、成立(上記 >>100 ご参照)
自明ではありません
なぜならBf内に開区間が存在するだけでは証明にならず
Bfが可算個のB_N,Mで被覆されていること
および
開区間をそのうちのどれかのB_N,Mの中に取れるからこそ証明になるからです
件の証明を書いた人の解説を読みましょう
>2)稠密な場合は自明に定理1.7の仮定が、不成立(仮定が不成立の場合は、証明の必要さえない)
定理の仮定は
``R-Bfが可算個の疎な閉集合で被覆できる''
ですが
あなたの主張は
``R-BfがRで稠密ならばR-Bfは可算個の疎な閉集合で被覆できない''
ということですか?
0119132人目の素数さん垢版2018/02/11(日) 17:09:11.51ID:ZmsN8ZUF
人生苦しい
つらい
悲しい
きつい

死にたい

もう疲れた
もう耐えきれない

寂しい

こんなに数学を懸命にやれるのに

なんでまじめにがんばって生きてるほうが馬鹿やらかして生きてる奴らに幸せを搾り取られないといけないんだ

彼女を返せ
彼女を返せ馬鹿野郎

体が究極におかしくなってきた

冷たい

しんどい
めんどくさい

人生つらい

人生悲しい

死にたい

俺は障害者だ

子に病気を負わせて過剰に苦労させるくらいなら

死にたい

永遠の夢をみたい
0120現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/12(月) 10:16:48.39ID:jJmJQjLM
>>119
本気なのかどうか不明だが

下記でも電話したらどうだ? 声の可愛い女性が相談に乗ってくれるだろう
https://www.inochinodenwa.org/
あなたがつらいときそばにいます 日本いのちの電話連盟

・いのちの電話では、メールによる相談活動を行っております。https://www.inochinodenwa.org/soudan.php#net

・ナビダイヤル 0570-783(なやみ)-556(こころ)

・フリーダイヤル 0120-783(なやみ)-556(こころ)
(引用終り)
0121現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/12(月) 10:23:39.20ID:jJmJQjLM
>>107-108
ご苦労さん

私スレ主は、命題の定義を自分でするつもりは全く無く、必要もない
ただ、いまの瞬間の議論の範囲で使える定義をどこからか、もってくればそれで十分でね。命題の定義の吟味はその方面の趣味の人に任せるよ(^^

https://kotobank.jp/word/%E5%91%BD%E9%A1%8C-141120
命題(めいだい)とは - コトバンク

デジタル大辞泉の解説
めい‐だい【命題】
1 題号をつけること。また、その題。名題。
2 論理学で、判断を言語で表したもので、真または偽という性質をもつもの。→判断
3 数学で、真偽の判断の対象となる文章または式。定理または問題。
出典 小学館デジタル大辞泉
(引用終り)
0122132人目の素数さん垢版2018/02/12(月) 11:41:07.06ID:X1pATS5E
>>121
零点
余計な付け足しは減点すると警告した

スレ主の成績表
本試験 零点
追試1回目 零点
追試2回目 零点
追試3回目 零点

コピペ(カンニング)してこのザマ
0124現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/12(月) 11:47:11.42ID:jJmJQjLM
>>109-110 & >>116-117
ご苦労さん

>ということである。しかし、Af(x) は x∈(a,b) を動かすごとに「有限値」であるに過ぎないので、
>x∈(a,b) を動かしたときの Af(x) が (1) のような一様に有界な L で抑えられるという保証はどこにもない。
>ゆえに、単に (a,b)⊂Bf なる開区間を取っただけでは、(1) が成り立つとは言えず、
>リプシッツ連続な開区間が取れるかどうかは分からなくなる。

「Af(x) は x∈(a,b) を動かすごとに「有限値」」だから
最大値 max(Af(x)) = m (m∈R) とおけば、Af(x) <= m
それで終りでしょ?
0125現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/12(月) 11:48:01.12ID:jJmJQjLM
>>111-115
>> f が原点で微分可能の場合分けには、
>>「f が原点で不連続ならば」は存在しない
>詭弁である。「仮定が偽でなる」ことと、「場合分けとして存在しない」こととを混同している。

やれやれ
こんな下のレベルから、争うわけ?
あなたは>>68
「定理C:f:R → R が原点で微分可能ならば、f は原点で連続である。」と書いた

仮定P: f:R → R が原点で微分可能
これで尽きている。「不連続」は入る余地なし
だから、微分可能の場合分けには、「f が原点で不連続ならば」は存在しない
微分可能の場合分けとしては、例えば、微分可能性のクラス(下記)とかはあるけどね

https://ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E5%8F%AF%E8%83%BD%E9%96%A2%E6%95%B0
微分可能性のクラス

関数に一階および二階の導関数が存在し、それらが両方とも連続であるとき、その関数は C2-級にであると言われる。
より一般的に、k-階までの導関数 f'(x), f''(x), ... , f(k)(x) が存在し、すべて連続であるなら、その関数は Ck-級であると言われる。
すべての正の整数 n に対して導関数 f(n) が存在するなら、その関数は滑らか、あるいは、C∞-級であると言われる。
(引用終り)
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況