X



トップページ数学
632コメント701KB
現代数学の系譜 工学物理雑談 古典ガロア理論も読む51
■ このスレッドは過去ログ倉庫に格納されています
0001現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/08(木) 21:58:07.31ID:rfgP69By
“現代数学の系譜 物理工学雑談 古典ガロア理論も読む”

数学セミナー時枝記事は、過去スレ39 で終わりました。
39は、別名「数学セミナー時枝記事の墓」と名付けます。

皆さまのご尽力で、伝統あるガロアすれは、
過去、数学板での勢いランキングで、常に上位です。(勢い1位の時も多い(^^ )

このスレは、現代数学のもとになった物理工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで良ければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^

話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。
“時枝記事成立”を支持する立場からのカキコや質問は、基本はスルーします。それはコピペで流します。気が向いたら、忘れたころに取り上げます。

なお、
小学レベルとバカプロ固定
サイコパスのピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」)
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
High level people
低脳幼稚園児のAAお絵かき
お断り!
小学生がいますので、18金よろしくね!(^^

High level people は自分達で勝手に立てたスレ28へどうぞ!sage進行推奨(^^;
また、スレ43は、私が立てたスレではないので、私は行きません。そこでは、私はスレ主では無くなりますからね。このスレに不満な人は、そちらへ。 http://rio2016.2ch.net/test/read.cgi/math/1506152332/
旧スレが512KBオーバー(又は間近)で、新スレ立てる
(スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。)
0162132人目の素数さん垢版2018/02/13(火) 22:27:42.93ID:cZFEnVOE
>>156
>最大値 sup (Af(x)) = m (m∈R) とおけば、Af(x) <= m
どう書いても存在するとは限りません
0163現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/13(火) 22:27:47.82ID:kLyhoiu6
>>144-146

>背理法を理解できないキチガイ。題意の関数が存在しないことを示すために、
>そのような関数の存在性を仮定しているに過ぎないことが理解できないゴミクズ。

違うよ。
場合分けを曲解していることによる誤解だな

定理1.7を場合分けして、その場合分けのR-Bfが稠密で、
系1.8の「有理数=R−Bf」の場合で、この場合、「有理数=R−Bf」はR中で稠密だ(>>159より)

この場合、Bf内に開区間など取れない。
稠密な場合は、開区間には、必ず「R−Bf」が入るから、定理1.7の「開区間がリプシッツ連続だ」という主張は、もともと無理でしょ?
0164132人目の素数さん垢版2018/02/13(火) 22:36:35.06ID:cZFEnVOE
>>158
あるいはBfの中に開区間(a,b)が存在する場合
その区間内にリプシッツ連続である区間が存在することを証明する必要があります
はて?というのはむしろあなたを批判している人が持つ疑問であり
あなたは上記を主張しているのですからそれを証明する必要があるわけです
しかもあなたは自明だとも言っているのですから
相当に単純な証明が示されて然るべきと期待しますよ
なお
件の証明を書いた人はそれを証明しています
0165132人目の素数さん垢版2018/02/13(火) 22:40:24.75ID:cZFEnVOE
>>163
>場合分けを曲解していることによる誤解だな
というより
場合分けすることなく証明できているのに
なぜ場合分けをしなくてはいけないと思っているか解せないというのが
件の証明を書いた人の気持ちであろうと思いますね
0166現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/13(火) 22:44:15.05ID:kLyhoiu6
>>162

>>最大値 sup (Af(x)) = m (m∈R) とおけば、Af(x) <= m
>どう書いても存在するとは限りません

それでも結構だが
定理1.7の条件「 Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }」で、これを満たすある開区間(a,b)が存在するとして

その区間内全ての点で、「Af(x) <= m」を満たさない?
あるいは、「Af(x) <= m」の点はどこにも存在しない?

それでも、開区間(a,b)の中に、リプシッツ連続である開区間(a',b')が取れる? 
取れるというのが、定理1.7の主張ですよね?

余談だけれど、定理の証明というのは、一番成立し難い場合にも、その前提条件を付加してきちんと証明できないと、その証明は信用されませんよ
上記の定理1.7の補集合が稠密な場合とか、いまの場合の「その区間内全ての点で「Af(x) <= m」を満たさない? あるいは、「Af(x) <= m」の点はどこにも存在しない?」場合とかを
易しい場合だけ証明して、「QED!」はないですよ
0167132人目の素数さん垢版2018/02/13(火) 22:45:24.72ID:cZFEnVOE
できれば>>131についてもお答えいただけますか
0168132人目の素数さん垢版2018/02/13(火) 22:46:31.92ID:cZFEnVOE
>>166
>その区間内全ての点で、「Af(x) <= m」を満たさない?
>あるいは、「Af(x) <= m」の点はどこにも存在しない?
自明と書いたのはあなたですから
ぜひ証明してください
0169現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/13(火) 23:46:38.89ID:kLyhoiu6
>>161-160 訂正の訂正

念のため
すべての x∈Rで、不連続で微分も不可。不連続だから、ディニ微分不可。
 ↓
すべての x∈Rで、不連続で微分も不可。不連続だから、ディニ微分有限値不可。

とします。理由は、下記の「補完数直線上では、各ディニ微分は常に存在する」より。定理1.7の仮定は、「< +∞」ですので、元のままでも、「+∞ や ?∞」は除外されていますが。

https://ja.wikipedia.org/wiki/%E3%83%87%E3%82%A3%E3%83%8B%E5%BE%AE%E5%88%86
ディニ微分
(抜粋)
注意
・補完数直線上では、各ディニ微分は常に存在する。しかし、それらの値は有限とは限らず、+∞ や ?∞ となることもある(すなわち、ディニ微分は「拡張実数値」の意味において、常に存在する)。
・f が局所リプシッツ連続ならば、ディニ微分 f'_{+} は有限である。もし f が t において微分可能ならば、その t における各ディニ微分は通常の意味での微分に等しい。
(引用終り)
0170現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/14(水) 00:02:26.54ID:66CEJ9Q+
>>165
>>場合分けを曲解していることによる誤解だな
>というより
>場合分けすることなく証明できているのに
>なぜ場合分けをしなくてはいけないと思っているか解せないというのが
>件の証明を書いた人の気持ちであろうと思いますね

話は逆で、場合分けして、証明できない場合があれば、それは「定理が成り立たない」ってことですよ
定理1.7の場合、それは補集合R-Bfが稠密な場合で、その場合、集合Bf内に開区間なく、またリプシッツ連続な区間もない

「場合分けして、証明できない場合があれば、それは定理が成り立たない」は、反例による証明でも同じ理屈ですよ
反例は1つで良い。反例が成立する場合が1つあれば良いのです

例えば、「素数は全て奇数である」という定理には、反例素数の2があります。
だが、「2を除く素数は、全て奇数である」は、正しい定理です。

同様に、定理1.7においては、補集合R-Bfが稠密な場合は、集合Bfを満たす開区間は取れません。
「補集合R-Bfが稠密な場合は、集合Bfを満たす開区間は取れない」という仮定と、R内で「f はある開区間の上でリプシッツ連続である」という結論とは、両立しませんよ。
0171現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/14(水) 00:10:46.54ID:66CEJ9Q+
>>164>>168

Bfを満たす開区間(a,b)が存在し→その開区間内にリプシッツ連続である開区間(a',b')が取れる
という証明の流れと思います

証明は考えてみますが、結論「リプシッツ連続である開区間(a',b')が取れる」の前提として、仮定「Bfを満たす開区間(a,b)が存在」するが必要と思っています
なので、ここを強調しておきます

なお、「Bfを満たす開区間(a,b)の存在」が否定される場合は、結論「リプシッツ連続である開区間(a',b')が取れる」も否定されると思いますよ
もし、証明可能と言われるなら、逆にどうぞと申し上げておきます

なお、>>170をご参照ください
0172132人目の素数さん垢版2018/02/14(水) 00:20:09.04ID:ZbM//CC/
じゃ自明じゃないじゃんw バカかこいつw
0173現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/14(水) 00:28:56.76ID:66CEJ9Q+
>>167

>>131より)
>>127
> >>2)稠密な場合は自明に定理1.7の仮定が、不成立(仮定が不成立の場合は、証明の必要さえない)
> >定理の仮定は
> >''R-Bfが可算個の疎な閉集合で被覆できる''
> >ですが
> >あなたの主張は
> >''R-BfがRで稠密ならばR-Bfは可算個の疎な閉集合で被覆できない''
> >ということですか?
>
> いいえ違います。
ではどういうことですか?上記で不成立とする仮定とはなんでしょう?
(引用終り)

回答します
1.(>>13)「系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.」に対し、定理1.7を適用するのは適切ではないと考えます
2.理由は、>>170-171に述べました(R-Bfが稠密な場合には、定理1.7は数学の定理として成り立っていない)
0174現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/14(水) 00:40:13.75ID:66CEJ9Q+
>>147
>「 東京タワーが塔ならば、鍋料理は複数存在する。」は真。
>こんな奇妙な世界が記号論理。一般論として使うと目も当てられなくなる。

バートランド・ラッセルのこんな話かな?(^^
まあ、「裏庭に東京タワーがあれば、入場料を取って、大もうけができる」は真かな?
https://ja.wikipedia.org/wiki/%E3%83%90%E3%83%BC%E3%83%88%E3%83%A9%E3%83%B3%E3%83%89%E3%83%BB%E3%83%A9%E3%83%83%E3%82%BB%E3%83%AB
バートランド・ラッセル
(抜粋)
記述理論
記述理論(Theory of Description)は指示対象が存在しない「現代のフランス王」や「ペガサス」といった語句を解釈する際に、フレーゲのようにそのような語句を含んだ文を無意味としたり、それら非存在者の指示対象としてなんらかの概念の「存在」を仮定することなしに、解釈を可能とするためにラッセルが発見した手法である。
1905年の『表示について』で初めて発表された。

記述理論とは、以下のような手法である。

「現代のフランスの王ははげである」

という文章の意味を考える場合、この文を、

「あるものが存在し、そのものは一つであり、フランスの王であり、かつはげである」

と翻訳する。すると、実在しない「現代のフランスの王」が示す指示対象として存在者をなんら仮定することなく有意味に文を解釈でき、その真偽を確定できる。
(引用終り)
0175132人目の素数さん垢版2018/02/14(水) 01:06:54.41ID:sLMrM9T3
>>159
>ところが、場合分けとして、「無理数=R−Bf」とか、「超越数=R−Bf」は、できない
>”内点を持たない閉集合の高々可算和で被覆できる”の条件に、合致しないからだ

その場合分けは「仮定が偽」になることが明白なだけであって、その場合分け自体は可能である。
あるいは、次のように言ってもよい。お前がそこで言っていることはつまり、

「仮定が偽のケースは場合分けとしては不可能である」

という屁理屈である。だったら、その屁理屈を拝借すれば、全く同じように、
「 R−B_f は R の中で稠密」という場合分けも不可能である。
なぜなら、その場合「 R−B_f が第一類集合 」の条件に合致しないからだ(定理1.7により)。
0176132人目の素数さん垢版2018/02/14(水) 01:08:21.70ID:sLMrM9T3
>>159
>同様に、「定理C: f:R → R が原点で微分可能ならば、f は原点で連続である」 で、
>場合分け ”(1) f は原点で連続 (2) f は原点で不連続”は不可

その場合分けは やはり可能だし、どちらのケースでも、
「仮定が偽」になることは全く明白ではない。特に (2) のケースは、

「結論に合致しないケース」

なのであって、「仮定に合致しないケース」ではないので、スレ主の言い分である

「仮定が偽のケースは場合分けとしては不可能である」

という屁理屈にすら全く当てはまっていない。

あるいは、お前にとっては、(2)の場合に仮定が偽になることが明白に見えるかもしれないが、
それは 定理C を先に適用してしまっているからであって、既に述べたように循環論法である。
ゆえに、定理C の場合には、(1),(2)による場合分けは可能である。
0177132人目の素数さん垢版2018/02/14(水) 01:09:43.27ID:sLMrM9T3
さて、上記の理由により、定理C の証明の中で P1,P2 と場合分けした場合には、
"場合分けP2" を事前に排除することは不可能であることが確定した。従って、当初の予定通り
―――――――――――――――――――――――
P: f は原点で微分可能
Q: f は原点で連続

P1:f は原点で微分可能かつfは原点で連続
P2:f は原点で微分可能かつfは原点で不連続

P = P1∨P2
―――――――――――――――――――――――
という場合分けになる。そして、お前は次のように主張するのである。

「 P2 の場合に「 P2 → Q 」を導くのは、なんか変。ゆえに、定理C は数学の命題としてふさわしい形ではない」

これは一体どういうことだね?
0178132人目の素数さん垢版2018/02/14(水) 01:13:44.77ID:sLMrM9T3
追記。

>ところが、場合分けとして、「無理数=R−Bf」とか、「超越数=R−Bf」は、できない
>”内点を持たない閉集合の高々可算和で被覆できる”の条件に、合致しないからだ

繰り返しになるが、お前がここで言っていることはつまり、
「仮定が偽のケースは場合分けとしては不可能である」という屁理屈である。
その一方で、世の中には次のような定理が存在する。

定理:a^b が有理数になるような無理数 a,b が存在する。

この定理の証明として、次のような有名なものがある。
――――――――――――――――――――――――――――――
証明:c=√2 と置くと、これは無理数であることが知られている。
そこで、c^c の値に注目し、以下のように場合分けする。

(1) c^c は有理数である (2) c^c は無理数である

(1) の場合、a=b=c と置けばよいことになるので、証明が終わる。
(2) の場合、a=c^c と置けば、まず a は無理数である。
また、b=c と置けば、これも無理数である。c=√2 だったから、

a^b = (c^c)^c = c^{c^2}= (√2)^(√2^2) = 2

となるので、a^b は有理数である。よって、(2) の場合も証明が終わる。
――――――――――――――――――――――――――――――――

[続く]
0179132人目の素数さん垢版2018/02/14(水) 01:16:14.39ID:sLMrM9T3
[続き]

上記の証明はよく知られた証明であり、「正しい証明である」ことに注意せよ。
一方で、c^c すなわち √2^√2 は実際には「無理数」であることが
証明されている(簡単には証明できないらしいが)。となると、上記の証明における

(1) c^c は有理数である

のケースは、仮定が偽ということになる。従って、お前の屁理屈によれば、そもそも

>(1) c^c は有理数である (2) c^c は無理数である

という場合分け自体が不可能ということになる。その一方で、上記の証明は
よく知られた証明であり、「正しい証明」なのである。たとえば、

https://ja.wikipedia.org/wiki/排中律

に全く同じ証明が載っている。にも関わらず、スレ主の屁理屈によれば、
そもそも (1),(2) による場合分け自体が不可能となってしまい、
上記の証明は「間違っている」ことになってしまう。

これは一体どういうことだね?
0180132人目の素数さん垢版2018/02/14(水) 01:28:06.89ID:TXT4lmT9
>>173
聞いていることに答えていただけますか?
``定理1.7の仮定が不成立''
のその``仮定''とは何のことでしょう?
0181132人目の素数さん垢版2018/02/14(水) 01:30:21.26ID:TXT4lmT9
>>171
あなたはそれを``自明''と書いたのですよ?
実のところ
その部分を証明するのが件の証明の``キモ''なのです
自明でないと認識できたのなら証明を読みましょう
0182132人目の素数さん垢版2018/02/14(水) 01:31:48.15ID:TXT4lmT9
>>170
>話は逆で、場合分けして、証明できない場合があれば、それは「定理が成り立たない」ってことですよ
場合分けせずに証明できていますから
当然ながら
場合分けしても証明が出来ています
場合分けした条件を使う必要が無いというだけのことです
0183132人目の素数さん垢版2018/02/14(水) 01:32:05.54ID:sLMrM9T3
>>163
>この場合、Bf内に開区間など取れない。
>稠密な場合は、開区間には、必ず「R−Bf」が入るから、
>定理1.7の「開区間がリプシッツ連続だ」という主張は、もともと無理でしょ?

「R−B_f が第一類かつ R−B_f が R の中で稠密」という仮定は「偽」なので、
スレ主の屁理屈によれば、そもそもそのような場合分け自体が不可能である。
つまり、スレ主は自爆している。

あるいは、次のように言ってもよい。
「R−B_f が第一類かつ R−B_f が R の中で稠密」という仮定は「偽」なので、
矛盾した命題からはどんな命題も導出できるがゆえに、
「ある開区間の上でリプシッツ連続だ」という主張も導出できる。
スレ主は「導出できない」などとほざいているが、実際には導出できるのである(仮定が偽だから)。
では、なぜ「R−B_f が第一類かつ R−B_f が R の中で稠密」が偽であると分かるのか?
それは、定理1.7 から従う。
0184132人目の素数さん垢版2018/02/14(水) 01:34:22.96ID:TXT4lmT9
>>171
>なお、「Bfを満たす開区間(a,b)の存在」が否定される場合は、結論「リプシッツ連続である開区間(a',b')が取れる」も否定されると思いますよ
当たり前です
証明をお考えください
件の証明よりも簡単なものになれば
それは件の証明をした人も喜ぶでしょうよ
0185132人目の素数さん垢版2018/02/14(水) 01:36:49.66ID:sLMrM9T3
あるいは、同じことの繰り返しになるが、次のように言ってもよい。

>この場合、Bf内に開区間など取れない。
>稠密な場合は、開区間には、必ず「R−Bf」が入るから、
>定理1.7の「開区間がリプシッツ連続だ」という主張は、もともと無理でしょ?

お前のこの屁理屈を定理Cに適用すると、次のようになる。
――――――――――――――――――――――――――――
P: f は原点で微分可能
Q: f は原点で連続

P1:f は原点で微分可能かつfは原点で連続
P2:f は原点で微分可能かつfは原点で不連続

P = P1∨P2

スレ主:
P2 の場合には、f が原点で不連続であることが仮定されているのだから、
f が原点で連続であるという主張はもともと無理である。
つまり、P2 の場合には、定理C は証明できない。

ゆえに、定理C は数学の定理としてふさわしい形をしていない。
――――――――――――――――――――――――――――

お前はここで、「定理Cの場合は P1,P2 による場合分けが不可能だ」という屁理屈を
何度も述べているようだが、全く同じ屁理屈は定理1.7にも適用できるので、
お前の屁理屈はどちらに転んでも完全に破綻している。というか、もともと論理が滅茶苦茶。問題外。
0186132人目の素数さん垢版2018/02/14(水) 01:38:44.93ID:sLMrM9T3
>>160
>だが、上記で
>A_f(x)= |p| (xは有理数で x=q/p で p と q は互いに素),
>A_f(x)= 0 (xは無理数)
>とすれば、これはディリクレ関数と同じ性質を持つ。
>つまり、すべての x∈Rで、不連続で微分も不可。微分不可だから、ディニ微分不可。
>だから、B_fは空集合

息をするように間違えるゴミクズ。俺は

f(x)= |p| (xは有理数で x=q/p で p と q は互いに素),
f(x)= 有限値なら何でもよい (xは無理数)

と書いたのではない。

A_f(x)= |p| (xは有理数で x=q/p で p と q は互いに素),
A_f(x)= 有限値なら何でもよい (xは無理数)

と書いたのである。すなわち、 f そのものをディリクレ関数っぽい値に設定したのではなく、
A_f の方をディリクレ関数っぽい値に設定したのである。もしそのような性質が成り立つ f が
存在したとすると、(a,b)⊂B_f なる開区間は取り放題なのに、f はどの開区間の上でも
リプシッツ連続にならないので、

「 (a,b)⊂B_f の場合はリプシッツ連続性が自明に分かる」

というスレ主の直観は破壊されることになる。

[続く]
0187132人目の素数さん垢版2018/02/14(水) 01:41:48.63ID:sLMrM9T3
[続き]

ここでお前は、次のように言うかもしれない。
―――――――――――――――――――――――――――――――――――――――――
A_f(x) がディリクレ関数っぽい状態なら、その前の f だってディリクレ関数っぽいはずであり、
ゆえに f はどの点でも微分不可能のはずで、B_fは空集合になるだろう。
―――――――――――――――――――――――――――――――――――――――――
しかし、この意見は的外れであることを先に指摘しておく。
なぜなら、A_f(x) は おかしな挙動をある程度は取り得るからである。たとえば、

f(x)=0 (x=0), x^{3/2}sin(1/x) (x≠0)

という例の場合、A_f(x) は原点で 不 連 続 であることが確認できる。
もちろん、この f の場合は、A_f(x) は原点以外のところでは連続になっているが、
しかし原点では不連続なのである。

ところで、f の原点での挙動を、他の有限個の点 x_1, x_2, …, x_n に "移植" することは
明らかに可能であるから、そのように移植した新しい関数を g とするとき、A_g(x) は
x=0, x_1, x_2, …, x_n において不連続ということになる。もちろん、A_g(x) は
各点で「有限値」のままである。

というように、少なくとも有限個の点で A_f(x) が不連続になることは実際に「ある」。
問題は、A_f(x) が R 全体でディリクレ関数っぽい状況になることがあり得るのかということであるが、
俺が書いた>>110の手法を使えば、そのような関数は「無い」ことが分かる。

しかし、それは>>110を使ったからこそ「無い」ことが分かるのであって、
「無いことは自明である」ということにはならないのである。
0189132人目の素数さん垢版2018/02/14(水) 17:33:55.32ID:fdysUhrS
>>175-179 & >>183 & >>185

>>ところが、場合分けとして、「無理数=R−Bf」とか、「超越数=R−Bf」は、できない
>>”内点を持たない閉集合の高々可算和で被覆できる”の条件に、合致しないからだ
>
>その場合分けは「仮定が偽」になることが明白なだけであって、その場合分け自体は可能である。
>あるいは、次のように言ってもよい。お前がそこで言っていることはつまり、
>
>「仮定が偽のケースは場合分けとしては不可能である」
>
>という屁理屈である。だったら、その屁理屈を拝借すれば、全く同じように、
>「 R−B_f は R の中で稠密」という場合分けも不可能である。
>なぜなら、その場合「 R−B_f が第一類集合 」の条件に合致しないからだ(定理1.7により)。

普通の証明論の場合分けを否定されてもね。それ無理筋ですよ
(”場合分け”は、私の独自説ではなく、ごく一般の数理です)
集合論で言えば、仮定で有理数Qを問題にしているときに、集合Qの中での場合分けは可能です
が、集合Qの外、つまり、「無理数=R−Bf」とか、「超越数=R−Bf」は、できない。それをやれば、プロレスの場外乱闘ですよ

それから、”「 R−B_f は R の中で稠密」という場合分けも不可能である。
なぜなら、その場合「 R−B_f が第一類集合 」の条件に合致しないからだ(定理1.7により)”という主張も無理筋でしょう
それをいうなら、(>>13)”系1.8 有理数の点で不連続”には、適用できないということですよね
「 R−B_f は R の中で稠密」という場合分けが、定理1.7で存在しないなら、「系1.8 有理数」には定理1.7は適用できませんね

以上
0190132人目の素数さん垢版2018/02/14(水) 17:34:52.60ID:fdysUhrS
>>186
これは、どうも失礼。私の早とちりでしたね
あなたは、こういう例を考える力はすごくあるね〜(^^

「f(x)= |p| (xは有理数で x=q/p で p と q は互いに素),
f(x)= 有限値なら何でもよい (xは無理数)

と書いたのではない。

A_f(x)= |p| (xは有理数で x=q/p で p と q は互いに素),
A_f(x)= 有限値なら何でもよい (xは無理数)

と書いたのである。すなわち、 f そのものをディリクレ関数っぽい値に設定したのではなく、
A_f の方をディリクレ関数っぽい値に設定したのである。もしそのような性質が成り立つ f が
存在したとすると、(a,b)⊂B_f なる開区間は取り放題なのに、f はどの開区間の上でも
リプシッツ連続にならない」
(引用終わり)

なるほど。でもね、この例は、諸刃の剣というやつでしょ
(一般性を損なわず”A_f(x)=0 (xは無理数)”とします)
1)∀p ∈Q を考えた場合、”Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }”で、
  無理数x=irに収束するQ内のコーシー列が取れる。分母q→∞。だから分子もp→∞。
2)補足:1/2=0.5に近い無理数x=irを考えると、コーシー列pn/qnで、分母qn→∞のとき、分子p =〜 0.5q→∞となる
3)なので、「(a,b)⊂B_f なる開区間は取り放題」ではない

つづく
0191132人目の素数さん垢版2018/02/14(水) 17:35:36.44ID:fdysUhrS
>>190 つづき

以下参考
(>>13より)
定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
(引用終わり)

http://yusuke-ujitoko.hatenablog.com/entry/2017/05/17/005434
リプシッツ連続 緑茶思考ブログ 2017-05-17
(抜粋)
定義:リプシッツ連続
関数f(x)が任意の実数x,yに対し、

?f(x)?f(y)??k?x?y?

を満たす0以上のkがとれるとき、関数f(x)はリプシッツ連続であるといい、kをリプシッツ定数という。

x=yのとき、任意の実数について上式は成り立つので、
「関数f(x)がリプシッツ連続」であることは、「x≠yとなる任意の実数x,yに対して

?f(x)?f(y)/(x?y)? ? k

を満たす0以上の定数kがとれることと同値である。

つまり関数f(x)がリプシッツ連続であるとは、関数y=f(x)のグラフ上の任意の異なる2点(a,f(a)),(b,f(b))を通る直線の傾きが、?k以上k以下である、
すなわち、関数f(x)の変化率の絶対値はkを超えないということである。
(引用終わり)

https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%97%E3%82%B7%E3%83%83%E3%83%84%E9%80%A3%E7%B6%9A リプシッツ連続

以上
0195132人目の素数さん垢版2018/02/14(水) 18:15:21.87ID:sLMrM9T3
>>189
>が、集合Qの外、つまり、「無理数=R−Bf」とか、「超越数=R−Bf」は、できない。それをやれば、プロレスの場外乱闘ですよ

「場外乱闘」などという言葉を使ってみても、お前が言っている内容は全く変わらない。
お前がそこで言っていることはつまり、
――――――――――――――――――――――――――――――――――
R−B_f が第一類集合なのに「 R−B_f=無理数」としてしまえば、
R−B_f が第一類集合であることに矛盾するので、この場合分けは出来ない
――――――――――――――――――――――――――――――――――
ということである。この屁理屈を>>178-179に適用すると、次のようになる。

――――――――――――――――――――――――――――――――――
c=√2 とすると、c^c は無理数であることが知られている。すると、
c^c は無理数なのに「 c^c は有理数 」としてしまえば、
c^c が無理数であることに矛盾するので、この場合分けは出来ない。
――――――――――――――――――――――――――――――――――
つまり、スレ主は>178-179の証明が「間違いだ」と言っていることになるのである。
しかし、>178-179の証明は、よく知られた「正しい証明」である。

これは一体どういうことだね?
0196132人目の素数さん垢版2018/02/14(水) 18:33:31.82ID:sLMrM9T3
>>195
>なぜなら、その場合「 R−B_f が第一類集合 」の条件に合致しないからだ(定理1.7により)”という主張も無理筋でしょう
>それをいうなら、(>>13)”系1.8 有理数の点で不連続”には、適用できないということですよね
>「 R−B_f は R の中で稠密」という場合分けが、定理1.7で存在しないなら、「系1.8 有理数」には定理1.7は適用できませんね

何度も同じことを言わせるな。定理1.7は系1.8の証明の中で適用可能である。
なぜなら、定理1.7 の主張は

「 R−B_f が第一類集合なら、f はある開区間の上でリプシッツ連続」

というものだからだ。系1.8 だけでなく、
一般に R−B_f が第一類集合でありさえすれば、定理1.7が適用可能。
0197132人目の素数さん垢版2018/02/14(水) 18:36:23.51ID:sLMrM9T3
>>190
>(一般性を損なわず”A_f(x)=0 (xは無理数)”とします)
>1)∀p ∈Q を考えた場合、”Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }”で、
>  無理数x=irに収束するQ内のコーシー列が取れる。分母q→∞。だから分子もp→∞。
>2)補足:1/2=0.5に近い無理数x=irを考えると、コーシー列pn/qnで、分母qn→∞のとき、分子p =〜 0.5q→∞となる
>3)なので、「(a,b)⊂B_f なる開区間は取り放題」ではない

計算の仕方が意味不明。お前がそこでやっていることは、

「 1/2 に近い無理数 x を1つ取り、有理数列 pn/qn であって pn/qn → x を満たすものを取った」

ということに過ぎない。このときに pn → +∞, qn → +∞ が成り立つのは当たり前の話。
で?どうしてそこから 「(a,b)⊂B_f なる開区間は取り放題ではない」という結論が出るんだ?

(a,b) ⊂ B_f が "成り立たない" ためには、(a,b) 内のある点 z において Af(z)=+∞ が
成り立たなければならないんだぞ?どうやってそのような点 z を見つけるんだ?
お前の書き方だと、あたかも Af(x)=+∞ が成り立つかのように書かれているが、
pn/qn を取っただけでどうして Af(x)=+∞ が出るんだ?

|(f(x)−f(pn/qn))/(x−pn/qn)|

↑この式で n→∞ としてみても、Af(x)=+∞ は全く出て来ないぞ?
0198132人目の素数さん垢版2018/02/14(水) 18:39:53.16ID:sLMrM9T3
>>190
もしかしてお前、A_f(x)=0 と f(x)=0 を混同してるんじゃないか?
あるいは、A_f(q/p)=|p| と f(q/p)=|p| を混同してるんじゃないか?
お前は f(x)=0, f(pn/qn)= |qn| として計算しているんじゃないか?
何度も言うけど、俺は

f(x)= |p| (xは有理数で x=q/p で p と q は互いに素),
f(x)= 有限値なら何でもよい (xは無理数)

と書いたのではなくて、

>A_f(x)= |p| (xは有理数で x=q/p で p と q は互いに素),
>A_f(x)= 有限値なら何でもよい (xは無理数)

と書いたのだぞ?あたま大丈夫?あるいは、

「 pn/qn → x かつ Af(pn/qn)=|qn| → +∞ だから、Af(x)=+∞ 」

だと勘違いしてるんじゃないか?Af(z) は z の関数として連続ではないのだから、
pn/qn → x かつ Af(pn/qn) → +∞ でも Af(x)=+∞ なんて言えないぞ?
0199現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 08:46:23.94ID:PodxFPJ7
準備

>>191 修正再録
http://yusuke-ujitoko.hatenablog.com/entry/2017/05/17/005434
リプシッツ連続 緑茶思考ブログ 2017-05-17
(抜粋)
定義:リプシッツ連続
関数f(x)が任意の実数x,yに対し、

|f(x)-f(y)|<= k|x-y|

を満たす0以上のkがとれるとき、関数f(x)はリプシッツ連続であるといい、kをリプシッツ定数という。

x=yのとき、任意の実数について上式は成り立つので、
「関数f(x)がリプシッツ連続」であることは、「x≠yとなる任意の実数x,yに対して

|f(x)=f(y)/(x-y)| <= k

を満たす0以上の定数kがとれることと同値である。

つまり関数f(x)がリプシッツ連続であるとは、関数y=f(x)のグラフ上の任意の異なる2点(a,f(a)),(b,f(b))を通る直線の傾きが、?k以上k以下である、
すなわち、関数f(x)の変化率の絶対値はkを超えないということである。
(引用終わり)
0200現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 08:47:00.44ID:PodxFPJ7
準備追加

>>13より)f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
(引用終り)

「lim sup y→x |(f(y) − f(x))/(y − x)|< +∞」は、
下記の4つの Dini微分 (D^+ g)(c),(D + g)(c),(D^- g)(c),(D - g)(c)が
有限値で収まることを意味している。

https://www.amazon.co.jp/dp/0387984801
https://books.google.co.jp/books?id=MzQ6JA6SiHYC&;pg=PA215&lpg=PA215&dq=%22liminf+of+functions%22#v=snippet&q=%20&f=false
Fundamentals of Real Analysis 著者: Sterling K. Berberian 出版社: Springer; Softcover reprint of the original 1st ed. 1999版 (1998/11/1)

P220のパラグラフ5.3.6に4つの Dini微分 (D^+ g)(c),(D + g)(c),(D^- g)(c),(D - g)(c)
と、lim sup, lim inf との関係が載っている
(引用終り)
0202現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 10:15:35.48ID:RGRVREaW
準備追加2

(>>169 追加引用)
https://ja.wikipedia.org/wiki/%E3%83%87%E3%82%A3%E3%83%8B%E5%BE%AE%E5%88%86
ディニ微分
(抜粋)
定義[編集]
連続関数 f: R → R の上側ディニ微分(しばしば右上微分とも呼ばれる[1])は、

f'_{+}(t) def= limsup _h → {0+} {f(t+h)-f(t)}/h

により定義される。ここで limsup は上極限を表す。同様に、下側ディニ微分は

f'_{-}(t) def= liminf _h → {0+} {f(t+h)-f(t)}/h

により定義される。ここで liminf は下極限を表す。

注意
・補完数直線上では、各ディニ微分は常に存在する。しかし、それらの値は有限とは限らず、+∞ や -∞ となることもある(すなわち、ディニ微分は「拡張実数値」の意味において、常に存在する)。
・f が局所リプシッツ連続ならば、ディニ微分 f'_{+} は有限である。もし f が t において微分可能ならば、その t における各ディニ微分は通常の意味での微分に等しい。

D 記法と追加の定義
しばしば f'_{+}(t) の代わりに D^{+}f(t), f'_{-}(t)の代わりに D_{+}f(t) が記号として用いられ[1]、また

D^{-}f(t) def=limsup _{h→ {0-} {f(t+h)-f(t)}/h, D_{-}f(t) def=liminf _{h→ {0-} {f(t+h)-f(t)}/h

が定義される。
つまり、ディニ微分の「D 記法」は、プラスかマイナスかの符号によってそれぞれ左側、右側からの微分を表し、その符号の位置が上か下かによってそれぞれ上極限、下極限を表すのである。
(引用終り)
0204現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 10:52:05.85ID:RGRVREaW
>>199-202 の準備で何をしたかったのかというと

1.ディニ微分を間に入れて

定理1.7の条件;lim sup y→x |(f(y) − f(x))/(y − x)|< +∞
 ↓↑
ディニ微分
 ↓↑
定理1.7の結論;リプシッツ連続 (”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”>>199より)

という関係を見ようとしたわけだ

2.まず、「lim sup y→x |(f(y) − f(x))/(y − x)|< +∞」から、4つのディニ微分がいずれも有限値だと
 それは、即ちリプシッツ連続だということだ

3.逆もまた言えるわけだ。
  リプシッツ連続だと、4つのディニ微分がいずれも有限値であると
  そして、4つのディニ微分がいずれも有限値だと、「lim sup y→x |(f(y) − f(x))/(y − x)|< +∞」だと
 (この部分は、ディニ微分を介さずとも、直接
   ”|f(x)-f(y)|<= k|x-y|” → ”lim sup y → x |(f(y) − f(x))/(y − x)|< +∞” が見易いかと思う)

つづく
0205現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 10:54:53.35ID:RGRVREaW
>>204 つづき

1.まず、リプシッツ連続”|f(x)-f(y)|<= k|x-y|” → ”lim sup y → x |(f(y) − f(x))/(y − x)|< +∞”
  の方が分かりやすいので、ここからいくと

>>13より)
定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
f はある開区間の上でリプシッツ連続である.
(引用終わり)

 で、
 f はある開区間の上でリプシッツ連続である
  ↓
 f はある開区間の上で ”lim sup y → x |(f(y) − f(x))/(y − x)|< +∞”である
 が言える

2.つまり、定理1.7が成り立つと、仮定の集合Bfもまた、ある開区間を含む
  だから、定理1.7が成り立つと、補集合R−Bfが稠密ではないという結論になる(補集合R−Bfが稠密なら、Bfは開区間を含みえない)

3.繰り返すが、定理1.7が成り立つ場合は、補集合R−Bfが稠密ではない(∵開区間が存在するため)という結論になる

つづく
0206現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 10:56:48.17ID:RGRVREaW
>>205 つづき

1.さて、もう一つの下記

 a) lim sup y→x |(f(y) − f(x))/(y − x)|< +∞
  ↓
 b) リプシッツ連続 (”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”>>199より)

 を認めると、前記と併せて、a)とb)は同値ということになる

2.また、「仮定の集合Bfが、ある開区間を含む」場合
 a)→b)を認めると、「仮定の集合Bfが、ある開区間を含む」→「その開区間でリプシッツ連続」が言える

以上
0207現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 11:07:20.49ID:RGRVREaW
補足
なにが、自明(トリビア)かは、人によると思うが

”ディニ微分を間に入れて

定理1.7の条件;lim sup y→x |(f(y) − f(x))/(y − x)|< +∞
 ↓↑
ディニ微分
 ↓↑
定理1.7の結論;リプシッツ連続 (”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”>>199より)

という関係を見”ると(>>204

定理1.7の構造がよく見えるだろうと

以上
0208現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 11:13:48.63ID:RGRVREaW
>>197-198
この例は、諸刃の剣というやつでしょ(>>190)

>>204より

リプシッツ連続 (”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”>>199より)
 ↓↑
im sup y→x |(f(y) − f(x))/(y − x)|< +∞

が言えるから、リプシッツ連続を否定する例を作ると、自分に跳ね返って、
”im sup y→x |(f(y) − f(x))/(y − x)|< +∞”が、否定されるってことでしょ
0211現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 11:33:20.69ID:RGRVREaW
>>210 補足

定理1.7の証明を読んだが
(なお、定理1.7が分からない人は>>15-17ご参照)

1)
・f : R → R で Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
・Bf内のある点 x0 ∈ Bf の回りに、近傍(x0 - δ、x0 + δ)を取って
・近傍(x0 - δ、x0 + δ)内が、すべてBf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }を満たす
  ↓
 近傍(x0 - δ、x0 + δ)内に、リプシッツ連続な開区間 (x0 - δ’、x0 + δ’)が取れるという
 証明のストーリーと読みました

2)が、それ、暗黙に、”近傍(x0 - δ、x0 + δ)内が、すべてBf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }を満たす”を使っていますね?

3)その条件は、補集合R−BfがR中稠密な場合は、使えないでしょ

この点を補足しておきます。
なお、>>205も再度強調しておきます。

以上
0212132人目の素数さん垢版2018/02/15(木) 11:44:45.49ID:gCnkTTzV
>>206
> a) lim sup y→x |(f(y) − f(x))/(y − x)|< +∞
>  ↓
> b) リプシッツ連続 (”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”>>199より)
まず
もう少し正確な表現で描き直した上で証明をしてください
(成り立たない例は件の証明を書いた人が挙げていますよ?)
0213132人目の素数さん垢版2018/02/15(木) 11:49:09.18ID:gCnkTTzV
>>211
>3)その条件は、補集合R−BfがR中稠密な場合は、使えないでしょ
ですので
R-BfがRで稠密な場合は定理の条件を満たすfは存在しないということになります
あなたが定理を``間違っている''と主張する場合
R-Bfが稠密でかつ可算個の疎な閉集合で被覆できるfの例を作れなければ
説得力は皆無ですよ
0215現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 13:41:22.24ID:RGRVREaW
>>213
ご苦労さまです

(引用)
「> 3)その条件は、補集合R−BfがR中稠密な場合は、使えないでしょ
ですので
R-BfがRで稠密な場合は定理の条件を満たすfは存在しないということになります」
(引用終わり)

いやいや、流石にそれは強引な主張では?(下記ご参照)

>あなたが定理を``間違っている''と主張する場合
>R-Bfが稠密でかつ可算個の疎な閉集合で被覆できるfの例を作れなければ
>説得力は皆無ですよ

私の主張は逆で、
定理1.7で、補集合R−BfがR中稠密な場合は、
きちんと、条件設定”補集合R−BfがR中稠密”を付加した上で、そういう関数fが存在しないというなら、
それを筋道立てて、証明すべきであると。それをやらないと説得力なしです。

以前も書いたように
ケース1
f : R → R で、Rの部分集合Bfがfの連続な点の集合で、補集合R−Bfが不連続な点の集合の場合

ケース2(上記の逆で)
f : R → R で、Rの部分集合Bfがfの不連続な点の集合で、補集合R−Bfが連続な点の集合の場合

この2つの場合で
ケース1では、”R−Bf が内点を持たない閉集合の高々可算和で被覆でき、R中稠密” な関数fは存在します。例としては、トマエ関数です
ケース2では、”R−Bf が内点を持たない閉集合の高々可算和で被覆でき、R中稠密” な関数fは存在しせん。理由は、下記の”不連続性の分類”をご参照ください

なので、問題の定理1.7のR−BfがR中稠密な場合は、きちんとした別証明が必要と思いますよ(みそくそ一緒の定理1.7の証明でなく)
そして、
ケース1のように、そのような「関数f」が存在するなら、系1.8へ定理1.7を適用して矛盾を導くことはできません
ケース2のように、そのような「関数f」が存在しないなら、系1.8の証明は、開区間の存在を経由することはありません

(参考)
https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E
不連続性の分類
(抜粋)
関数の不連続点の集合
函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。
(引用終わり)

以上
0216現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 13:44:15.18ID:RGRVREaW
>>200 補足

この
https://www.amazon.co.jp/dp/0387984801
https://books.google.co.jp/books?id=MzQ6JA6SiHYC&;pg=PA215&lpg=PA215&dq=%22liminf+of+functions%22#v=snippet&q=%20&f=false
Fundamentals of Real Analysis 著者: Sterling K. Berberian 出版社: Springer; Softcover reprint of the original 1st ed. 1999版 (1998/11/1)

は、定理1.7を書いた人から、教えてもらったテキストです
一言補足です
0217現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/15(木) 14:22:07.26ID:RGRVREaW
再録
スレ48 https://rio2016.5ch.net/test/read.cgi/math/1513201859/439
439 現代数学の系譜 雑談 古典ガロア理論も読む 2017/12/23(土) 10:37:20.53

http://www.artsci.kyushu-u.ac.jp/~ssaito/jpn/maths/real_analysis_2009_proceedings.pdf
典型的連続関数のDini微分 斎藤新悟 (Shingo SAITO) 九州大学大学院数理学研究院
(抜粋)
1 Dini微分とDenjoy-Young-Saksの定理

x = 0, 1 においては Dini 微分のうちいくつかが定義されないため,以下では (0, 1) の点における Dini 微分を主に考える.
Dini 微分に関する最も重要な定理の 1 つが次の Denjoy-Young-Saks の定理である:
定理 1.2(Denjoy-Young-Saks の定理)
f : [0, 1] → R とする.このとき,ほとんどすべての x ∈ (0, 1) に対して次のいずれかが成立する:
(1) D^+f(x) = D+f(x) = D^-f(x) = D-f(x) ∈ R,すなわち f は x で微分可能.
(2) D^+f(x) = D-f(x) ∈ R, D^-f(x) = ∞, D+f(x) = -∞.
(3) D^-f(x) = D+f(x) ∈ R, D^+f(x) = ∞, D-f(x) = -∞.
(4) D^±f(x) = ∞, D±f(x) = -∞.
注意 1.3 この定理では,f の連続性や可測性は仮定する必要がない.歴史的には最初にDenjoy, Young が独立に連続関数について示し,次に Young が可測関数にまで拡張し,最後に Saks が任意の関数について証明した.証明は例えば [2] の §3.5 を参照.
Denjoy-Young-Saks の定理の威力を実感するため,この定理から直ちに従う 2 つの系を述べる.

系 1.5 任意の f : [0, 1] → R に対して集合 {x ∈ (0, 1) | f′(x) = ∞} は零集合である.
証明 f ′(x) = ∞ なる x ∈ (0, 1) では Denjoy-Young-Saks の定理の (1), (2), (3), (4) のいずれも成立しないことから系が従う.

http://www.artsci.kyushu-u.ac.jp/~ssaito/jpn/maths/talks.html
研究集会での講演 斎藤新悟 九州大学基幹教育院准教授
(抜粋)
36.典型的連続関数の Dini 微分 (2009/10/23) [日本語講演,60 分]
実解析学シンポジウム 2009 @ 城西大学 坂戸キャンパス 関連文書:アブストラクト,報告集
(引用終り)

(追加)
https://en.wikipedia.org/wiki/Denjoy%E2%80%93Young%E2%80%93Saks_theorem
Denjoy?Young?Saks theorem
以上
0218132人目の素数さん垢版2018/02/15(木) 15:58:12.59ID:0aAhb8Kl
おっちゃんです。

背理法のからくり。
基本的に、背理法で示せる命題は、有限回の推論で矛盾を導くことで示せるようになっている。
Pを仮定、Qを結論とする。P、Qが両方共に真或いは偽のどちらか一方になるのときの命題 P→Q を示すことを考える。
命題 P→Q を背理法で示すとする。Qを否定する。その上で元の仮定のPも仮定する。
そうすると、P、Qは両方共に真か偽のどちらか一方だから、命題 P∧ ¬Q を偽と仮定したことになる。
そして、偽の命題 P∧ ¬Q から始めて、有限回の推論で、背理法で示すべき命題 P→Q を示すことになる。
これを行うにあたり、Qの否定 ¬Q からいえることだけを適用して有限回の推論で矛盾を導けて P→Q を導けるとする。
そうすると、P、Qは両方共に真か偽のどちらか一方で、示すべき命題 P→Q は元々真だから、
仮定のPを任意の(Pとは異なる他の)仮定 P' で置き換えて P'→Q を背理法で示せることになる。
つまり、一般論として、結論Qが与えられた上で、任意の仮定 P' に対して、命題 P'→Q を背理法で示せることがいえる。
だが、これはあり得ない。有限回の推論の過程においてこのあり得ない事柄を導いて矛盾を得られた原因は、
背理法で命題 P→Q を示すにあたり、偽の命題 P∧ ¬Q から推論を始めて、
¬Q だけから行える有限回の推論に基づくことのみを適用して有限回の推論で矛盾を導けたことにある。
従って、背理法で命題 P→Q を有限回の推論で示すにあたり、命題 P∧ ¬Q を偽と仮定して、
¬Q だけから行える有限回の推論に基づくことのみを適用して有限回の推論で矛盾を導いて P→Q を導いてはならない。
だから、背理法で命題 P→Q を有限回の推論で示すには、単に ¬Q からいえることだけではなく、
元の仮定Pに含まれているすべての事柄から行える推論に基づくことも適用して有限回の推論で矛盾を導いて命題 P→Q を示さないといけない。
0219132人目の素数さん垢版2018/02/15(木) 16:00:23.82ID:0aAhb8Kl
(>>218の続き)
そうして背理法の枠組みの中で命題 P→Q を示すにあたり、偽の命題 P∧ ¬Q を仮定して、
有限回の推論で矛盾を導くと、矛盾を導けた原因は偽の命題 P∧ ¬Q を仮定したことにあるから、
命題 P→Q を示すにあたり仮定した偽の命題 P∧ ¬Q は否定されることになる。
そうすると、背理法の推論の過程では P∧ ¬Q を否定した命題 ¬(P∧ ¬Q)=¬P ∨ ¬¬Q=¬P ∨Q が得られることになる。
つまり、Pでない または Qである といえることになる。示すべき命題 P→Q を背理法で示すにあたり、
仮定のPは元から仮定されているから、Pであることがいえて、「Pでない」ということはあり得ない。
だから、「Qである」ことがいえる。つまり結論Qが得られる。
そのようにして、命題 P→Q を背理法で示すようになる。背理法の推論の仕組みとしては、そのようになっている。

スレ主は、今回の場合、仮定のPにあたる定理1.7の「R-Bfが可算個の疎な閉集合で被覆できる」を完全に適用していない。
それ故に、背理法を正しく適用出来ていないことになる。
0220132人目の素数さん垢版2018/02/15(木) 16:12:44.23ID:0aAhb8Kl
まあ、>>219
>命題 ¬(P∧ ¬Q)=¬P ∨ ¬¬Q=¬P ∨Q
は正しくは
>命題 ¬(P∧ ¬Q)≡¬P ∨ ¬¬Q≡¬P ∨Q
である。スレ主に、今回の背理法による推論のからくりは教えた。
だが、定理1.7を背理法で示すにあたり、
「R-Bfが可算個の疎な閉集合で被覆できる」を完全に適用するには ε-δ だけでなく
最低でも位相空間は必要だな。
0221132人目の素数さん垢版2018/02/15(木) 17:10:00.99ID:VntZxPVK
>>215
>定理1.7で、補集合R−BfがR中稠密な場合は、
>きちんと、条件設定”補集合R−BfがR中稠密”を付加した上で、そういう関数fが存在しないというなら、
>それを筋道立てて、証明すべきであると。それをやらないと説得力なしです。

>なので、問題の定理1.7のR−BfがR中稠密な場合は、きちんとした別証明が必要と思いますよ(みそくそ一緒の定理1.7の証明でなく)

その屁理屈は聞き飽きた。同じ屁理屈を 定理C に適用すると、次のようになる。
――――――――――――――――――――――――――――――――――――
定理C で、「 f が原点で不連続」な場合は、きちんと条件設定 "f は原点で不連続" を
付加したうえで、そういう関数fが存在しないというなら、それを筋道立てて、証明すべきであると。
それをやらないと説得力なしです。 なので、問題の定理Cの「 f が原点で不連続な場合」は、
きちんとした別証明が必要と思いますよ(みそくそ一緒の 定理C の証明でなく)
――――――――――――――――――――――――――――――――――――

ここでスレ主は、定理C のときだけは、次のような別の屁理屈を繰り出すのである。
――――――――――――――――――――――――――――――
定理Cの場合は、f が原点で不連続という場合分けは存在しない。
なぜなら、f が微分可能なら f は原点で連続になるからだ。
なぜそうなるかって?定理Cにそう書いてあるじゃないか。
――――――――――――――――――――――――――――――

だったら、同じ屁理屈を定理1.7にも適用すれば、次のようになる。
――――――――――――――――――――――――――――――――
定理1.7 の場合は、R−B_f が R の中で稠密という場合分けは存在しない。
なぜなら、R−B_f が第一類集合なら、f はある開区間の上でリプシッツ連続だからだ。
なぜそうなるかって?定理1.7 にそう書いてあるじゃないか。
――――――――――――――――――――――――――――――――

結局、スレ主とかいうゴミクズの屁理屈は、どちらに転んでも自爆に終わるのである。
0222132人目の素数さん垢版2018/02/15(木) 17:11:30.82ID:VntZxPVK
>>204
>2.まず、「lim sup y→x |(f(y) − f(x))/(y − x)|< +∞」から、4つのディニ微分がいずれも有限値だと
> それは、即ちリプシッツ連続だということだ

息をするように間違えるゴミクズ。キチガイ。問題外。レベルが低すぎる。
お前の屁理屈を適用すると、

「 Af(x) が各点で有限値なら、f はどの区間の上でもリプシッツ連続だ 」

ということになる。しかし、既に見た

f(x)=0 (x=0), x^{3/2}sin(1/x) (x≠0)

という関数が反例であると何度も言っている。この f は原点の近傍でリプシッツ連続にならないのである。
任意の点で A_f(x) が有限値であるにも関わらずな。

>>206
>1.さて、もう一つの下記
> a) lim sup y→x |(f(y) − f(x))/(y − x)|< +∞
> b) リプシッツ連続 (”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”>>199より)
> を認めると、前記と併せて、a)とb)は同値ということになる

(a)と(b)は同値にならない。理由は上に同じ。上で挙げた関数 f について、
A_f(x) は任意の点で有限値であるが、この f は原点の近傍でリプシッツ連続ではない。
0223132人目の素数さん垢版2018/02/15(木) 17:12:49.42ID:VntZxPVK
>>205
>2.また、「仮定の集合Bfが、ある開区間を含む」場合
> a)→b)を認めると、「仮定の集合Bfが、ある開区間を含む」→「その開区間でリプシッツ連続」が言える

まさしく「息をするように間違えるゴミクズ」。
上記の関数 f について、B_f=R が成り立つので、(a,b)⊂B_fなる開区間は取り放題である。
特に (−1, 1)⊂B_f という開区間を取ってみよう。すると、お前が言うところの

>「仮定の集合Bfが、ある開区間を含む」→「その開区間でリプシッツ連続」が言える

を適用すれば、f は (−1, 1) 全体でリプシッツ連続ということになるが、
しかし f は (−1, 1) 上ではリプシッツ連続にならない。
0224132人目の素数さん垢版2018/02/15(木) 17:17:05.50ID:VntZxPVK
>>208
>この例は、諸刃の剣というやつでしょ

原理的には諸刃の剣であることは俺も理解している。しかし、

>>110により、そのような関数は存在しない 」

と何度も添えているので、実際には俺の方は無傷なのである。一方で、お前はノーダメージとはいかない。
なぜなら、>>190のような関数が存在しないことを>>110を経由せずに自明に証明できなければ、

「 (a,b)⊂B_f なる開区間が存在するなら、f がある区間の上でリプシッツ連続になるのは自明だ」

というお前の直観が破壊されるからである。
というか、今までのお前の立場を考慮すると、お前の方から自発的に
>>190のような関数の有無に拘るべきなのである。にも関わらず、お前には

「 (a,b)⊂B_f なる開区間が存在するなら、f がある区間の上でリプシッツ連続になるのは自明だ」

というアホな "思い込み" があるので、お前は上記のような考察をせず、
なぜか俺の方から そのような考察をするという逆転した状況になっているのであるw
0225132人目の素数さん垢版2018/02/15(木) 17:19:31.83ID:VntZxPVK
>>211
>・f : R → R で Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
>・Bf内のある点 x0 ∈ Bf の回りに、近傍(x0 - δ、x0 + δ)を取って
>・近傍(x0 - δ、x0 + δ)内が、すべてBf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }を満たす
> 近傍(x0 - δ、x0 + δ)内に、リプシッツ連続な開区間 (x0 - δ’、x0 + δ’)が取れるという
> 証明のストーリーと読みました

微妙に間違っている。正確には、もっと強いことを言っている。

・ ある B_{N,M} に対して、(a,b) ⊂ B_{N,M} なる開区間が存在する
・ この開区間の中にリプシッツ連続な区間が取れる

このように、B_f ではなく B_{N,M} 内に開区間が取れると言っている。
これは、B_f の中に開区間が取れることよりも遥かに強い条件になっている。
なぜなら、既に述べたように、B_f の各点xでは A_f(x) がただ単に有限値であるにすぎないのに対して、
B_{N,M} 上では一様に A_f(x)≦N が成り立つからだ。

>2)が、それ、暗黙に、”近傍(x0 - δ、x0 + δ)内が、
>すべてBf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }を満たす”を使っていますね?

微妙に間違っている。正確には、もっと強いことを使っている。上で述べたように、
「ある B_{N,M} が (a,b) ⊂ B_{N,M} なる開区間を含む」ということを使っている。
この場合、(a,b)内の各点 x に対して Af(x)≦N が成り立つことになる。
そのような強い条件を使っているのである。

[続く]
0226132人目の素数さん垢版2018/02/15(木) 17:24:24.67ID:VntZxPVK
[続き]

>3)その条件は、補集合R−BfがR中稠密な場合は、使えないでしょ

使える。なぜなら、R−B_f が第一類集合なら、ベールのカテゴリ定理より、ある B_{N,M} に対して
(a,b) ⊂ B_{N,M} なる開区間が存在するからだ。すなわち、「 R−B_f が第一類集合 」という条件は

「 ある B_{N,M} に対して (a,b) ⊂ B_{N,M} なる開区間が存在する 」

という滅茶苦茶に強い条件を暗黙のうちに含意しているのである。
特に、R−B_f が第一類集合なら、R−B_f は R の中で稠密になりえないのである。
そういう「なりえない条件」を最初から付け加えたところで、仮定が偽になるだけである。
お前の屁理屈を使えば、

「そのような場合分けは存在しない」

のである。文句があるなら「ベールのカテゴリ定理」を批判したまえ。
0227132人目の素数さん垢版2018/02/15(木) 17:32:37.99ID:VntZxPVK
というか、何のための「第一類集合」だと思っているのだ。一般に、A ⊂ R が

「 R−A は第一類集合 」

という条件を満たすならば、A ⊂ ∪_k F_k なる可算無限個の閉集合 F_k を
任意に取るとき、ベールのカテゴリ定理により、ある F_k は内点を持つことになる。
すなわち、(a,b)⊂F_k なる開区間が取れることになる。大事なことなのでもう一度言う。

――――――――――――――――――――――――――――――
R−A が第一類集合ならば、「 A 」の方については、
A ⊂ ∪_k F_k なる可算無限個の閉集合 F_k を任意に取るとき、
ある F_k は内点を持つ(ベールのカテゴリ定理より)。
――――――――――――――――――――――――――――――

すなわち、R−A が第一類集合ならば、「 A 」の方は非常に強い性質を持っているのである。
にも関わらず、お前はこのことをずっと無視しつづけており、機械的に「第一類集合」という言葉を
振り回すだけで、第一類集合から導かれる上記の「強い」性質を全く視野に入れていない。

「 A 」が非常に強い性質を持つならば、その性質から暗黙のうちに含意される
様々な派生の性質があるはずで、それらの性質に矛盾するような条件は、お前から言わせれば
条件として追加できないはずであり、「場合分けとして存在しない」はずなのである。

しかし、お前は機械的に「第一類集合」という言葉を振り回すだけで、この条件から
何が言えるのか全く考慮してないために、お前が思いついた場合分けは何でも可能だと
思い込んでいる。いや、実際にはどんな場合分けも可能(おかしな場合分けは仮定が偽になるだけで、
場合分け自体は可能)なのだが、お前に言わせれば、「矛盾する場合分けは最初から
場合分けとして存在しない」はずである。にも関わらず、お前は追加した条件が
矛盾しているかどうかを全く考慮していないのである。やってることに一貫性がなくて滅茶苦茶。
0228132人目の素数さん垢版2018/02/15(木) 17:34:13.49ID:VntZxPVK
とりあえず、これだけは言っておこう。

R−B_f は第一類集合とする。このとき、「 B_f 」の方は次の性質を満たす。

――――――――――――――――――――――――――――――――
B_f ⊂ ∪_k F_k なる可算無限個の閉集合 F_k を任意に取るとき、
ある F_k は内点を持つ(ベールのカテゴリ定理より)。
――――――――――――――――――――――――――――――――

↑お前は今までずっとこの性質を無視し続けてきたので、これからはこの性質を使いたまえ。
0229132人目の素数さん垢版2018/02/15(木) 17:39:05.08ID:VntZxPVK
あと、定理1.7とは違う話になるが、練習問題も出しておく。
以下、f:R→R に対して、f の不連続点全体の集合を E_f と書くことにする。
連続点ではなく、「不連続点」の集合な。

このとき、次の定理が成り立つ。
――――――――――――――――――――――――――――――――
定理E:
R−E_f が第一類集合ならば、(a,b) ⊂ E_f を満たすa,bが存在する。
――――――――――――――――――――――――――――――――

↑この 定理E は正しい定理である。スレ主にはその理由が分かるかな?
0230132人目の素数さん垢版2018/02/15(木) 18:36:00.21ID:gCnkTTzV
>>215
>いやいや、流石にそれは強引な主張では?(下記ご参照)
強引ではありませんよ
P->Q

P∧¬Q->矛盾 (もしくはP∧¬Qは偽)
は同値だからです
この定理は
P:R-Bfが可算個の疎な閉集合で覆える
Q:fがリプシッツ連続となる開区間が存在する
というものであり
fにリプシッツ連続となる開区間が存在するならR-BfがRで稠密にならないのは自明ですので
''R-Bfが可算個の疎な閉集合で覆える"∧"R-BfがRで稠密"->矛盾
となる訳です
件の証明を書いた人が再三指摘しているあなたの思考法の難点は
背理法を理解していないことにあるようですね
0231132人目の素数さん垢版2018/02/15(木) 18:39:00.33ID:gCnkTTzV
結局
>>131
にはお答えいただけないようですね
0233132人目の素数さん垢版2018/02/15(木) 18:59:39.71ID:TzXrTrkr
>なにせ、私は、この板では証明を書かない主義です
と、教科書を読まない主義、勉強をしない主義のバカが申しております
0234132人目の素数さん垢版2018/02/15(木) 20:35:06.26ID:gCnkTTzV
>>232
0235132人目の素数さん垢版2018/02/15(木) 20:48:23.16ID:gCnkTTzV
>>215
>きちんと、条件設定”補集合R−BfがR中稠密”を付加した上で、そういう関数fが存在しないというなら、
>それを筋道立てて、証明すべきであると。それをやらないと説得力なしです。
P->Q
が真である場合
A->¬Q
が真であっても(なくても)
P∧A->Q
も真ですよ
また
A->¬Q
が真である場合
P∧A->Q∧¬Q
も真となりますので
P∧Aは偽
ということです
ここで
P:R-Bfが可算個の疎な閉集合で覆える
Q:fがリプシッツ連続となる開区間が存在する
A:R-BfがRで稠密
を想定してください
0236132人目の素数さん垢版2018/02/16(金) 01:00:25.40ID:xXIgzvk8
>>215
>>あなたが定理を``間違っている''と主張する場合
>>R-Bfが稠密でかつ可算個の疎な閉集合で被覆できるfの例を作れなければ
>>説得力は皆無ですよ
>
>私の主張は逆で、
>定理1.7で、補集合R−BfがR中稠密な場合は、
>きちんと、条件設定”補集合R−BfがR中稠密”を付加した上で、そういう関数fが存在しないというなら、
>それを筋道立てて、証明すべきであると。それをやらないと説得力なしです。
背理法を理解していないことが納得がいかない元凶です
また
あなたの主張の1つは``件の定理は間違っている''というものですから
間違っていることを証明するか成立しない例を挙げるかその主張を取り下げるかしかありません
``間違っている''という主張を取り下げた上で``間違っていそうな気がする''程度であれば
数学的に間違ったことを主張しているということでの批判はされはしないでしょう
0237132人目の素数さん垢版2018/02/16(金) 01:17:30.91ID:eQJLjvN9
あなたの主張の1つは``時枝戦略は間違っている''というものですから
間違っていることを証明するか成立しない例を挙げるかその主張を取り下げるかしかありませんよ
0238132人目の素数さん垢版2018/02/16(金) 07:27:57.61ID:xXIgzvk8
>>236
``間違っていそうな気がする''
程度であってもバカにされることを気にするかも知れませんね
証明を読んで納得することが肝要ですよ
0239現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/16(金) 11:58:45.29ID:wmUyW91w
>>236-238
>あなたの主張の1つは``件の定理は間違っている''というものですから
>間違っていることを証明するか成立しない例を挙げるかその主張を取り下げるかしかありません

えらく根源的なレベルまで、話が戻っていますかね?
私の主張は、数学の理論というのは、定理:P→Q で、
定理が成立するというのは、P真→Q真が成り立っていて、命題PからQがきちんと導かれる(=証明がつけられる)
べし だと

そうして、定理の連鎖による数学の理論体系を構築する。定理:P→Q、定理:Q→R、・・・と続いて連鎖と理論体系を成すべし
その中に、「実は、P偽→Q偽で、命題自身は真なのですが・・」なんてのを、混ぜたら、みんなズッコケでしょう?

つづく
0240現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/16(金) 12:01:16.66ID:wmUyW91w
>>239 つづき

これを定理1.7に見るに(>>13より)
命題P中 「R−Bf が内点を持たない閉集合の高々可算和で被覆できる」を、普通に場合分けすると
>>23より)
1)R中稠密でない場合、
2)R中稠密な場合
に、二分でき

1)の場合について、
命題P’1:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密でない、とする。」
2)の場合について、
命題P’2:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
となる

そこで
>>205より、「定理1.7が成り立つと、仮定の集合Bfもまた、ある開区間を含む
  だから、定理1.7が成り立つと、補集合R−Bfが稠密ではないという結論になる(補集合R−Bfが稠密なら、Bfは開区間を含みえない)」

なので、命題P’2のい場合ついては、仮定P’2(稠密で開区間なし)と、 結論:ある開区間がリプシッツ連続 →この開区間は仮定のBfの条件を満たす
従って、仮定P’2と結論とが矛盾しているので、ここはきちんと場合分けをすべきだと

そして、「証明が正しいから、これで良いのだ」と仰るが、それはおかしい
繰り返すが、本来、定理の命題と証明は分離されるべきもので、例えば、定理が正しければ、元の証明以外の別証明もありうるわけだし

数学の定理の命題は、上記のように数学の理論体系の一部をなすべきものであるから、
命題の論理の連鎖がつながるように、最低限の体裁を整えないといけませんね

2)の場合について、
命題P’2:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
 ↓
結論:この場合は、fは空集合(存在しない)

という定理を立てるなら、それはまっとうな数学の定理と言える
しかし、
「結論:ある開区間がリプシッツ連続」
で、この場合は空集合で、条件が偽です。

「それで良い。条件が偽で命題は正しいし、証明が正しいから」
では、まずいと思いますよ

以上
0241現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/16(金) 12:05:22.34ID:wmUyW91w
>>237
時枝については、確率過程論や、ランダム現象の数理の中に、当てられない数列の例が、存在します
それが反例ですが、その理解が難しいんでしょうね
なお、ここらは、日本の伊藤清先生らの系譜で、日本数学の伝統の分野です
0242現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/16(金) 12:22:51.16ID:wmUyW91w
>>240 補足

系1.8については、別の理論で証明されています。それは既述の通りです。多分、ここは合意でしょう。
そして、背理法は系1.8の部分です。

問題は、定理1.7です。
ここは、背理法以前です。

定理1.7で、上記>>240 2)の場合について、
命題P’2:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
が、本当に空集合になるのかどうか? それは知りません

おそらく、空ではなく、反例として存在するのではないかと思っています
まあ、普通の連続・不連続で、R中の部分集合として連続がFσ、不連続がGδとして存在するの類似かな?と

つまり、「Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }」が連続に相当しFσ
補集合 R−Bf が、不連続に相当しGδだろうと

残念ながら、そういう理論の論文は見つかりませんでした
そして、これも残念ながら、リプシッツ連続や上記のBfと R−Bf とについて
「Fσ vs Gδ」理論を構築するような”かしこい頭”は、私にはありません(^^
どなたか、これに関する文献などあれば、ご紹介ください

「そんなこと簡単にできるよ」と、どなたか実行して頂ければ、さらに幸甚です(^^

以上

追伸
命題の仮定と結論レベルで矛盾している定理を、「証明しました」というのは、普通は「?」ですよ
0243現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/16(金) 15:04:53.67ID:wmUyW91w
>>218
おっちゃん、どうも、スレ主です。
ご苦労さまです

>有限回の推論に基づくことのみを適用して有限回の推論で矛盾を導いて

数学的帰納法や超限帰納法は、有限ですか無限ですか?

>>219
定理1.7は、背理法ではありませんよ
だから問題なんです
系1.8は、背理法です。

>>220
「完全に適用していない」とか、関係ないでしょ? 一部だけの使用でも矛盾が導ければ同じと考えます

以上
0245現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/16(金) 15:33:04.70ID:wmUyW91w
>>244 補足

(>>240より)
仮定P’2:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
 ↓
結論:この場合は、fは空集合(存在しない)

は、証明可能かもしれません。(定理1.7の証明で、「自動的に証明できている」という主張は無茶では?)

しかし
仮定P’2:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
  ↓
 f はある開区間の上でリプシッツ連続である
  ↓
結論: f はある開区間(=リプシッツ連続な開区間)の上で ”lim sup y → x |(f(y) − f(x))/(y − x)|< +∞”である
 が言える (つまり、リプシッツ連続→”lim sup y → x |(f(y) − f(x))/(y − x)|< +∞” が成立。つまり、Bf内に開区間ありと)
>>205より)

ですから、繰り返しますが
仮定は、補集合がR中稠密で、Bfは開区間など持ち得ない
結論は、Bfは開区間を持つ
です

だから、仮定から結論は、導けない。
この証明は不可能でしょう

だから、
仮定:補集合がR中稠密で、Bfは開区間など持ち得ない

から出発して
結論(A):そのようなfは空集合(存在しない)
結論(B):そのようなfは存在し、反例になる

このように、結論(A)か結論(B)か、どちらかをきちんと証明すべきです

(繰り返すが、仮定:補集合がR中稠密で、Bfは開区間など持ち得ない だから、結論が、Bf内に開区間あり は、まずいよと)

以上
0246現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/16(金) 15:46:35.35ID:wmUyW91w
>>235
>P->Q
>が真である場合

1)
P:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」(>>245

Q:「f はある開区間の上でリプシッツ連続である」
  ↓
 f はある開区間(=リプシッツ連続な開区間)の上で ”lim sup y → x |(f(y) − f(x))/(y − x)|< +∞”である
 が言える (つまり、リプシッツ連続→”lim sup y → x |(f(y) − f(x))/(y − x)|< +∞” が成立。つまり、Bf内に開区間ありと)

ですから、P→Q(”Bf内に開区間あり”)です

2)
一方で、”Bfの補集合が、R中稠密”ですから、Bf内に(Bfのみの)開区間なし(必ずBfの補集合R−Bfがその開区間に交じります)
ですから、P→¬Qです

3)
P→QとP→¬Qとは両立しません。どちらかを捨てるしかありません(排中律)
P→¬Qは”R中稠密”から自明ですので、P→Qを捨てることになります。

以上
0247現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/16(金) 15:49:31.45ID:wmUyW91w
>>230
引用
「この定理は
P:R-Bfが可算個の疎な閉集合で覆える
Q:fがリプシッツ連続となる開区間が存在する
というものであり
fにリプシッツ連続となる開区間が存在するならR-BfがRで稠密にならないのは自明ですので
''R-Bfが可算個の疎な閉集合で覆える"∧"R-BfがRで稠密"->矛盾
となる訳です
件の証明を書いた人が再三指摘しているあなたの思考法の難点は
背理法を理解していないことにあるようですね」
(引用終わり)

ここは、>>246ご参照
”P→QとP→¬Qとは両立しません。どちらかを捨てるしかありません(排中律)
P→¬Qは”R中稠密”から自明に成立ですので、P→Qを捨てることになります。”ってことです
背理法とは、明白に異なっています

以上
0248現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 垢版2018/02/16(金) 16:57:22.84ID:wmUyW91w
>>214 補足
>まあ、分かりやすい証明を考えますよ(^^

<経過報告>
>>204より)
1)定理1.7の条件;lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ ( lim supが有限)
  ↓↑
2)ディニ微分 (4つのDini微分が有限)
  ↓↑
3)定理1.7の結論;リプシッツ連続 (”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”>>199より)(k 有限)

まあ、命題3つとも全部”有限からみ”で、特に”2)ディニ微分 (4つのDini微分が有限)”を中心にして、1)2)3)が全て同値が言えるのえではというのがそもそもの発想です
1)と2)が同値であることは、>>200 テキスト Fundamentals of Real Analysis のP220 で終わっていると思う

3)が見かけ一番強い条件で、3)→1)を見るのは易しい(>>205に書いた)
だから、2)→3)又は1)→3)が言えれば良い

仮定は1)の”lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ ( lim supが有限)”の開区間が存在するだから
この開区間が存在する仮定のもとで、→(この区間内で)”リプシッツ連続”が言えれば良い

まあ、この程度の話だから、すでにどこかのテキストに同じ命題か類似命題があるのでは・・、その方が説得力もあるので探しているところ
無ければ、それこそ背理法を使って

”lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ ( lim supが有限)”の開区間が存在するにも拘わらず
この開区間内に、”リプシッツ不連続”な点(k 無限大発散)
として、矛盾を導く(例えば、”リプシッツ不連続”(k 無限大発散)な点では、4つのDini微分のどれかが無限大になる)
方針で、証明することになるだろう

(まあ、なにかテキストを見つけて読んだ方が勉強になるので、いま模索&思案中です・・(^^ )

以上
0249132人目の素数さん垢版2018/02/16(金) 17:33:03.22ID:oZfMkl2p
>>240
>そこで
>>205より、「定理1.7が成り立つと、仮定の集合Bfもまた、ある開区間を含む
>  だから、定理1.7が成り立つと、補集合R−Bfが稠密ではないという結論になる(補集合R−Bfが稠密なら、Bfは開区間を含みえない)」
>なので、命題P’2のい場合ついては、仮定P’2(稠密で開区間なし)と、
>結論:ある開区間がリプシッツ連続 →この開区間は仮定のBfの条件を満たす
>従って、仮定P’2と結論とが矛盾しているので、ここはきちんと場合分けをすべきだと

同じ屁理屈を定理Cに適用すると、次のようになる。
―――――――――――――――――――――――――――――――――――――
定理Cが成り立つと、f が原点で微分可能なら、f は原点で連続である。だから、
定理Cが成り立つと、f は原点で不連続になりえないという結論になる。なので、

(1) f が原点で連続である場合 (2) f が原点で不連続である場合

と場合分けしたときの (2) の場合については、仮定(2)と結論とが
矛盾しているので、ここはきちんと場合分けをすべきだと。
―――――――――――――――――――――――――――――――――――――

↑このように、お前は定理Cについて「(1),(2)のケースに場合分けしなければならない」と
ほざいているのである。
0250132人目の素数さん垢版2018/02/16(金) 17:34:22.38ID:oZfMkl2p
>>240
>2)の場合について、
>命題P’2:「R−Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
> ↓
>結論:この場合は、fは空集合(存在しない)
>という定理を立てるなら、それはまっとうな数学の定理と言える
>しかし、
>「結論:ある開区間がリプシッツ連続」
>で、この場合は空集合で、条件が偽です。
>「それで良い。条件が偽で命題は正しいし、証明が正しいから」
>では、まずいと思いますよ

同じ屁理屈を定理Cに適用すると、次のようになる。
―――――――――――――――――――――――――――――――
「(2) f は原点で不連続」の場合について、
命題:f は原点で微分可能で、fは原点で不連続とする。

結論:この場合は、f は空集合(存在しない)
という定理を立てるなら、それはまっとうな数学の定理と言える
しかし、
「結論:f は原点で連続」
で、この場合は空集合で、条件が偽です。
「それで良い。条件が偽で命題は正しいし、証明が正しいから」
では、まずいと思いますよ。
―――――――――――――――――――――――――――――――

↑このように、お前は定理Cについて「定理Cの記述のままでは まずいと思いますよ」と
ほざいているのである。
0251132人目の素数さん垢版2018/02/16(金) 17:35:23.51ID:oZfMkl2p
しかし、スレ主は定理Cに対しては次のような屁理屈を繰り出すのだった。
――――――――――――――――――――――――――――――
定理Cの場合は、「(2) f が原点で不連続」という場合分けは存在しない。
なぜなら、f が微分可能なら f は原点で連続になるからだ。
なぜそうなるかって?定理Cにそう書いてあるじゃないか。
――――――――――――――――――――――――――――――

だったら、同じ屁理屈を定理1.7にも適用すれば、次のようになる。
――――――――――――――――――――――――――――――――
定理1.7 の場合は、「 R−B_f が R の中で稠密」という場合分けは存在しない。
なぜなら、R−B_f が第一類集合なら、f はある開区間の上でリプシッツ連続だからだ。
なぜそうなるかって?定理1.7 にそう書いてあるじゃないか。
――――――――――――――――――――――――――――――――

結局、スレ主とかいうゴミクズの屁理屈は、どちらに転んでも自爆に終わるのである。
0252132人目の素数さん垢版2018/02/16(金) 17:46:51.60ID:oZfMkl2p
>>245
>ですから、繰り返しますが
>仮定は、補集合がR中稠密で、Bfは開区間など持ち得ない
>結論は、Bfは開区間を持つ
>です

>だから、仮定から結論は、導けない。
>この証明は不可能でしょう

>>142-143で論破済み。示すべきは

・「P → Q 」が真であることを証明すること

なのであって、「 P という仮定のもとで絶対に Q を導かなければ証明にならない 」
というわけではない。P が偽であることが示せたなら、その時点で
「P → Q 」は真だと確定するので、もはや Q に言及する必要は
どこにもなく、証明は終わっている。

どうしても Q を導出したければ、>>143に書いたように、
「矛盾した命題からは何でも導出できるので〜」という論法を使って
「 Q 」を導出すればよい。今回の場合は、仮定が矛盾していることを導いた後、
―――――――――――――――――――――――――
矛盾した命題からは任意の命題を導出してよいので、
特に「Bfは開区間を持つ」という命題を導出してよい。
よって、Bfは開区間を持つ。
―――――――――――――――――――――――――
と書けばよい。これできちんと結論が導出できている。

いずれにしても、お前がそこで書いていることは>>142-143で論破済み。
0253132人目の素数さん垢版2018/02/16(金) 17:48:29.17ID:oZfMkl2p
>>248
>だから、2)→3)又は1)→3)が言えれば良い

言えないよ。もしそこが言えたら、

(★) (a,b)⊂B_f なる開区間が存在するなら、f は (a,b) 全体でリプシッツ連続である

ということが示せることになってしまうが、既に見たように

f(x)=0 (x=0), x^{3/2}sin(1/x) (x≠0)

が(★)の反例になっている。この例では、(−1,1)⊂B_f が成り立つにも関わらず、
f は (−1,1) 上ではリプシッツ連続になってない。

つまり、お前の方針は自動的に失敗する。
0254132人目の素数さん垢版2018/02/16(金) 17:52:59.42ID:oZfMkl2p
>>242
>つまり、「Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }」が連続に相当しFσ
>補集合 R−Bf が、不連続に相当しGδだろうと

バカだな。一般に、次の 定理F が成り立つことに注意せよ。
――――――――――――――――――――――――――――――
定理F:
A ⊂ R は Fσ集合とする。このとき、もし R−A が第一類集合ならば、
(a,b)⊂A を満たす開区間 (a,b) が存在する。
――――――――――――――――――――――――――――――

よって、もし Bf が Fσ 集合ならば、R−B_f が第一類集合のときには
(a,b)⊂B_f なる開区間が必ず取れることが即座に確定する。
このことは、定理1.7を経由することで既に確定しているが、
上記の 定理F により、さらに直接的に確定するのである。
つまり、Bf が Fσ 集合ならば、R−B_f が第一類集合のときに

「 R−B_f は R の中で稠密 」

なんてのは最初から起こりようが無いのである。
スレ主の屁理屈によれば、"R の中で稠密" なんていう場合分けは存在しないのである。
つまり、お前が「 Bf は Fσ 集合であろう」と予想するなら、お前は自分自身の手で
墓穴を掘っていることになるのだ。

ちなみに、Bf は実際に Fσ 集合である。例の pdf のままではそのことは証明できないが、
手元にはその証明がある。そして、そのことを使っても定理1.7が証明できる。
なんなら、うpろだに上げてもよい。
0255132人目の素数さん垢版2018/02/16(金) 19:29:31.18ID:eQJLjvN9
>>241
>時枝については、確率過程論や、ランダム現象の数理の中に、当てられない数列の例が、存在します
アホ丸出しw
0256DJ学術 垢版2018/02/16(金) 20:00:20.87ID:yN3n4O8g
数学用語はリズムが合わないな。脚韻とかそっちの文学世界の方が楽しい。
0257132人目の素数さん垢版2018/02/16(金) 22:24:40.84ID:wpVIJgKd
時枝氏の議論はもう置いておこう。なんの話しか分からなくなる。
スレ主も「時枝」を議論したいなら専用スレ作ることを提案する。貴重な議論が「時枝」ですぐ乱れる。数学ネタをココから少々拾う身としては辛い。
専用スレ作っても意味無いかも知れぬが。
0258132人目の素数さん垢版2018/02/16(金) 23:05:50.96ID:ctIhm5VI
>>257
> 貴重な議論が「時枝」ですぐ乱れる。

貴重ですかねコレ
あまりに馬鹿馬鹿しい議論だと思いますが
証明読めば分かるのに難癖つけまくってるだけですよね
懇切丁寧に説明しても一向に分からないスレ主

時枝も同じですよ
問題を読み違えている人とか、まったく分かってない人とか
確率0とかねw
読み違えを指摘されても全く答えない ぷ氏
0259132人目の素数さん垢版2018/02/17(土) 07:32:25.44ID:oEbC5FQb
>時枝については、確率過程論や、ランダム現象の数理の中に、当てられない数列の例が、存在します
そこまで言うなら、数列の実例を挙げて当てられないことを証明しては?
時枝解法のどこが破綻するのか具体的に示してね
0260132人目の素数さん垢版2018/02/17(土) 09:16:59.89ID:07PyDvE/
おっちゃんです。
>>243
>>有限回の推論に基づくことのみを適用して有限回の推論で矛盾を導いて

>数学的帰納法や超限帰納法は、有限ですか無限ですか?
これも有限回の推論になる。
0261132人目の素数さん垢版2018/02/17(土) 09:19:22.23ID:07PyDvE/
>>243
>>219
>定理1.7は、背理法ではありませんよ
>だから問題なんです
>>218-219の補足だが、命題 P→Q を示すにあたり、背理法で
命題 P∧ ¬Q を偽と仮定したことは、Pであって かつ Qでない ことを仮定したことになる。
これは定理1.7でいうと、 「R−Bf が内点を持たない閉集合の高々可算和で被覆出来」て
かつ 「f :R→R は如何なる開区間の上でもリプシッツ連続ではない」ことを仮定したことになる。
つまり、「R−Bf が内点を持たない閉集合の高々可算和で被覆出来」て かつ
「f :R→R は如何なる開区間の上でも微分不可能 または fが或る開区間上微分可能だとしても導関数 f' は不連続である」
ことを仮定したことになる。これは、スレ主に従うと、そのままスレ主の主張に当てはまることになる。
そして、>>218-219>>218で書いたことの一部と似たような内容になるが、定理1.7を偽として真の命題である系1.8を導く証明が正しいとする。
そうすると出だしの定理1.7が偽だから、定理1.7とは違う他の命題 P' で任意に置き換えて、命題 P' から系1.8が導けることになる。
だが、このようなことはあり得ない。だから、定理1.7を偽として真の命題である系1.8を導く証明は正しくない。
だから、定理1.7を真として真の命題である系1.8を導く証明をすることになる。
それ故、このように、スレ主の主張に対して>>218-219の内容に似たことが適用されることになる。
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況