X



トップページ数学
1002コメント517KB
不等式への招待 第9章 [無断転載禁止]©2ch.net
レス数が950を超えています。1000を超えると書き込みができなくなります。
0001不等式ヲタ ( ゚∀゚)垢版2017/09/13(水) 11:20:03.95ID:i1anpb+k
ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
          ___          ----- 参考文献〔3〕 P.65 -----
    |┃三 ./  ≧ \   
    |┃   |::::  \ ./ | 
    |┃ ≡|::::: (● (● |  不等式と聞ゐちゃぁ
____.|ミ\_ヽ::::... .ワ......ノ     黙っちゃゐられねゑ…
    |┃=__    \           ハァハァ
    |┃ ≡ )  人 \ ガラッ

【まとめWiki】 http://wiki.livedoor.jp/loveinequality/

【過去スレ】
・不等式スレッド (第1章) http://science3.2ch.net/test/read.cgi/math/1072510082/
・不等式への招待 第2章 http://science6.2ch.net/test/read.cgi/math/1105911616/
・不等式への招待 第3章 http://science6.2ch.net/test/read.cgi/math/1179000000/
・不等式への招待 第4章 http://science6.2ch.net/test/read.cgi/math/1245060000/
・不等式への招待 第5章 http://uni.2ch.net/test/read.cgi/math/1287932216/
・不等式への招待 第6章 http://uni.2ch.net/test/read.cgi/math/1332950303/
・不等式への招待 第7章 http://rio2016.2ch.net/test/read.cgi/math/1362834879/
・不等式への招待 第8章 http://rio2016.2ch.net/test/read.cgi/math/1498378859/
・過去スレのミラー置き場 http://cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/

【姉妹サイト】
キャスフィ 高校数学板 不等式スレ  http://www.casphy.com/bbs/test/read.cgi/highmath/1169210077/
キャスフィ 高校数学板 不等式スレ2 http://www.casphy.com/bbs/test/read.cgi/highmath/1359202700/

【wikiなど】
Inequality (mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
List of inequalities
https://en.wikipedia.org/wiki/List_of_inequalities
List of triangle inequalities
https://en.wikipedia.org/wiki/List_of_triangle_inequalities
Wolfram MathWorld
http://mathworld.wolfram.com/topics/Inequalities.html
0852132人目の素数さん垢版2018/11/05(月) 04:57:42.95ID:mrtyuQkn
>>851
この出題者が出していた大量の不等式の問題は、もう削除されて見れないんだよな。
実に惜しいことをした。
0853132人目の素数さん垢版2018/11/08(木) 02:11:08.99ID:PxlSRNgU
bot.62
x,y,z∈[0,1] のとき、sqrt|x-y| + sqrt|y-z| + sqrt|z-x| の最大値

どぉやるんでせうか?
0854132人目の素数さん垢版2018/11/09(金) 03:38:15.13ID:UXVKU4RE
(3/4)*(1 + A/H)^2 ≧ (A/G)^3 + (G/H)^3

この手の不等式が胸やけ起こしそうなくらい沢山載ってる本ないかな?
0855132人目の素数さん垢版2018/11/09(金) 06:52:20.28ID:pvdoV3Z4
>>853 [62]

yはxとzの中間にあるとする。コーシーで
 (√|x-y| + √|y-z|)^2 ≦ (1+1) (|x-y|+|y-z|) = 2|x-z|,
(左辺) ≦ (1+√2)|z-x| ≦ 1+√2,
等号は(0,1/2,1) etc.

中国MO-2012 Round2-A.3
0857132人目の素数さん垢版2018/11/12(月) 08:15:22.35ID:TKDy5P8X
>>856

b+c-a = x, c+a-b = y, a+b-c = z,
とおく。(Ravi変換)
2a = y+z, 2b = z+x, 2c = x+y, a+b+c = x+y+z,

(左辺) = xy/z + yz/x + zx/y = (xxyy+yyzz+zzxx)/xyz,

(右辺) = 3(aa+bb+cc)/(a+b+c)^2 = 6(xx+yy+zz+xy+yz+zx)/{4(x+y+z)},

4(x+y+z)(xxyy+yyzz+zzxx) - 6xyz(xx+yy+zz+xy+yz+zx)
= (3x+y+z)[x(y-z)]^2 + (x+3y+z)[y(z-x)]^2 + (x+y+3z)[z(x-y)]^2 ≧ 0,
かな。
0859132人目の素数さん垢版2018/11/12(月) 19:53:45.29ID:TKDy5P8X
>>854

(3/4)(1 + A/H)^2 - (A/G)^3 - (G/H)^3 -1 = (1/108){(a-b)(b-c)(c-a)/abc}^2 ≧ 0,

(略証)
s = a+b+c, t = ab+bc+ca, u = abc,  = (a-b)(b-c)(c-a),
とおくと
A = s/3, G = u^(1/3), H = 3u/t,
A/H = st/9u, A/G = s/{3u^(1/3)}, G/H = t/{3u^(2/3)},
ゆえ
(左辺) = (3/4)(1+st/9u)^2 - s^3/27u - t^3/27uu -1
 = (1/108uu){(st+9u)^2 -4s^3u -4t^3 -108uu}
 = (1/108uu)竸2,
0860132人目の素数さん垢版2018/11/13(火) 09:14:18.15ID:btM1CEFR
>>859
(3/4)*(1 + A/H)^2 ≧ (A/G)^3 + (G/H)^3 + 1

3変数の場合に上式を証明しているけど、これは一般の場合にも成り立つのかな?
>>854では、右辺に +1がないのには意味があるのかな?
0863132人目の素数さん垢版2018/11/13(火) 22:03:59.25ID:btM1CEFR
[2] かんどころ P.121定理6.7 は、証明ついてないようだけど、どうやればいいか分かりますか?
0864132人目の素数さん垢版2018/11/14(水) 00:54:00.60ID:uakH23jG
>>860
右辺に +1 が無いと緩くなります。

2変数の場合は
 (3/4)(1 + A/H)^2 - (A/G)^2 - (G/H)^2 -1 = (3a+b)(a+3b){(a-b)/8ab}^2 ≧ 0,

∵ (A/G)^2 = (G/H)^2 = A/H = (a+b)^2 /4ab,
0865132人目の素数さん垢版2018/11/14(水) 03:43:20.66ID:uakH23jG
余談ですが、n変数の (A-G)/(G-H) の下限は
 n=2  1.0
 n=3  0.90096030150908885
 n=4  0.7761577683742073233
 n=5  0.67617485
 n=6  0.59845640
 n=7  0.53716474
 n=8  0.48781223
 n=9  0.44727765
 n=10  0.41339822
ぐらいかな。

http://suseum.jp/gq/question/2646, 2948
0868132人目の素数さん垢版2018/11/14(水) 14:58:31.03ID:fnsD9k3Y
>>867
あまりにもショボすぎるので、改造してみた。

a,b,c,d,x,y,z∈R, a≧d≧0, b≧c≧0, x≧y≧0 に対して、
(ax+cy+z)(bx+dy+z)≧{(a+b)x+z}{(c+d)y+z}.

後ろのzも pz+qw, rz+sw にできぬか?

                l三`ー 、_;:;:;:;:;:;:j;:;:;:;:;:;:_;:;:;_;:-三三三三三l
               l三  r=ミ''‐--‐';二,_ ̄    ,三三三彡彡l_   この感じ・・・・
              lミ′   ̄    ー-'"    '=ミニ彡彡/‐、ヽ
                  l;l  ,_-‐ 、    __,,.. - 、       彡彡彳、.//  
_______∧,、_‖ `之ヽ、, i l´ _,ィ辷ァ-、、   彡彡'r ノ/_ ______
 ̄ ̄ ̄ ̄ ̄ ̄ ̄'`'` ̄ 1     ̄フ/l l::. ヽこ~ ̄     彡彳~´/  ̄ ̄ ̄ ̄ ̄ ̄
                 ヽ   ´ :l .l:::.         彡ィ-‐'′
                ゝ、  / :.  :r-、        彡′
              / ィ:ヘ  `ヽ:__,ィ='´        彡;ヽ、
          _,,..-‐'7 /:::::::ヽ   _: :_    ヽ      ィ´.}::ヽ ヽ、
      _,-‐'´    {  ヽ:::::::::ヘ `'ー===ー-- '   /ノ /::::::ヘ, ヽー、
0869132人目の素数さん垢版2018/11/14(水) 16:19:40.82ID:fnsD9k3Y
できた ( ゚∀゚) ウヒョッ

a,b,c,d,p,q,r,s,x,y,z.w∈R,
a≧d≧0, b≧c≧0, p≧s≧0, q≧r≧0, x≧y≧0, z≧w≧0 に対して、
(ax+cy+pz+rw)(bx+dy+qz+sw)≧{(a+b)x+(p+q)z}{(c+d)y+(r+s)w}.
0870132人目の素数さん垢版2018/11/14(水) 16:53:56.03ID:fnsD9k3Y
話を元に戻すと、>>867 を使ったAM-GMの証明 ([2] かんどころP.118)で、
1回目に>>867を使うところは分かる。

(a_1 + a_2 + (a_3+…+a_n))(a_1 + a_2 + (a_3+…+a_n))
≧(2a_1 + (a_3+…+a_n))(2a_2 + (a_3+…+a_n))

2回目に>>867を使うところ、どこが対応しているのか分からんのですが、どうなってるのですか?

(2a_1 + (a_3+…+a_n))(a_1 + a_2 + (a_3+…+a_n))
≧(3a_1 + (a_4+…+a_n))(2a_3 + (a_2+a_4+…+a_n))

以下続けて (k*a_1+ a_{k+1}+…+a_n) と (a_1 + a_2 + (a_3+…+a_n)) に>>867を使って
最終的に n*a_1 と S-a_1+a_k (k=2.3.…,n) になるまで続けるんだけど、そこが分かりませぬ。
0871132人目の素数さん垢版2018/11/15(木) 01:35:19.26ID:BIkI04V5
>>870

>>867 を使わなくても出せるでござる。
A-S≧0,d≧0 のとき
 (A-d)S - A(S-d) = d(A-S) ≧ 0,

ここで
 S = a_1 + a_2 + … + a_n,
 A = k・a_1 + a_{k+1} + … + a_n, (k=n のとき A=n・a_1)
 d = a_1 - a_k ≧ 0,
とおいて
{(k-1)a_1 +(a_k + … +a_n)}S - (k・a_1 +a_{k+1} + … +a_n)(S -a_1 +a_k) = (a_1 -a_k)(k・a_1 -S) ≧ 0,    (k=2,3,…,n)
0872132人目の素数さん垢版2018/11/15(木) 01:39:19.56ID:BIkI04V5
>>866
〔Jacobsthalの不等式〕
(n-1)個の正の実数 x_1, x_2, …, x_(n-1) の相加平均をA '、相乗平均をG ' とする。
それに x_n (>0) を追加した n個組の相加平均をA_n、相乗平均をG_n とする。このとき
 n(A_n - G_n) ≧ (n-1)(A '-G '),  …[1]
 (A_n/G_n)^n ≧ (A '/G ')^(n-1),  …[2]

(略証)
A_n, G_n, x_n を A, G, x と略記する。
[1]
 n A - (n-1)A '= x,
 n G - (n-1)G '= G '{n(G/G ') - (n-1)} ≦ G '(G/G ')^n = x, (← Bernoulli)
辺々引く。
[2]
 A '(A/A ')^n ≧ A '{n(A/A ') - (n-1)} = n - (n-1)A '= x, (← Bernoulli)
 G '(G/G ')^n = x,
辺々割る。

[1] または [2] を n=1 まで繰り返すと A ≧ G が出る。

ニコニコ大百科
http://dic.nicovideo.jp/a/jacobsthalの不等式
0873132人目の素数さん垢版2018/11/15(木) 05:32:47.02ID:Kjq0ut8v
>>871
ありがとうございます。
なるほど、>>867を使わずにできますね。
>>871の不等式を使って、残りも同様にしていけばいいんですね。
つまり prime132氏が新証明(?)をしたわけですな。

Guha が1967年に>>867を繰り返し使ってAM-GMを証明した方法も知りたい。
「Guha 1967 AM-GM」をgoogleで検索して一番上に出る
When Less is More: Visualizing Basic Inequalities
のPP.31-32に n=4のときに、Guha's inequality を繰り返し使った例があり、
それを見ても、2回目以降にどう使っているのか分かりません。

Guha's inequality
a≧0, p≧q≧0, x≧y≧0, then
(px+y+a)(x+qy+a)≧((p+1)x+a)((q+1)y+a).

(4A_4)^4
= (a+b+c+d)(a+b+c+d)(a+b+c+d)(a+b+c+d)
≧ (2a+c+d)(2b+c+d)(a+b+c+d)(a+b+c+d) …(1)
≧ (3a+d)(2b+c+d)(b+2c+d)(a+b+c+d)   …(2)
≧ 4a(2b+c+d)(b+2c+d)(b+c+2d)      …(3)
≧ 4a(3b+d)(3c+d)(b+c+2d)         …(4)
≧ 4a(4b)(3c+d)(c+3d)            …(5)
≧ 4a(4b)(4c)(4d)               …(6)
= (4G_4)^4

と書かれているんですが、(1)は(p,q,x,y,a) = (1,1,a,b,c+d)で理解できる。
(2)〜(6)はどう適用したのか謎。
たとえば(2)で (2a+c+d)(a+b+c+d)≧(3a+d)(b+2c+d) となるには
(p,q,x,y,a)に何を対応させているのか?x=a, y=c 以外が謎。
左辺第1因子の形からp=2,q=1でないといけないけど、第2因子に2がない。
0874132人目の素数さん垢版2018/11/15(木) 06:40:30.77ID:Kjq0ut8v
(3)→(4)は (p,q,x,y,a) = (2,2,b,c,d)で
(5)→(6)は (p,q,x,y,a) = (3,3,c,d,0)か。

じゃあ、残り3ヵ所は、どう適用したんだろう?
(1)→(2) (2a+c+d)(a+b+c+d)≧(3a+d)(b+2c+d)
(2)→(3) (3a+d)(a+b+c+d)≧(4a)(b+c+2d)
(4)→(5) (3b+d)(b+c+2d)≧(4b)(c+3d)

実は使ってないってオチなのか?
0875132人目の素数さん垢版2018/11/15(木) 08:38:51.30ID:Kjq0ut8v
本人の論文を探すしかないな。
U.C.Guha, arithmetric mean-geometric mean inequality, Mathematical Gazette, 51(1967),pp.14-146

というのは分かったけど、ネットに転がってないかな
0876132人目の素数さん垢版2018/11/15(木) 09:20:07.76ID:Kjq0ut8v
Handbook of Means and Their Inequalities, pp.101-102 を見たら、
Guhaの不等式を使った証明の数式部分が、省略している部分も含めて
[2] かんどころ P.118と全く同じだった。
0877132人目の素数さん垢版2018/11/17(土) 07:54:31.62ID:js5kwOKA
(1)
|x|≦1, |y|≦1 (x,y∈R) に対して、
0≦ xx + yy - 2xxyy + 2xy*√{(1-xx)(1-yy)} ≦1.

(2)
m>n>1 (m,n∈Z) に対して、
(m+n+1)!/(m!*n!) > {(m+n)^{m+n}}/{(m^m)(n^n)} > 2^{2n-1}.
0879132人目の素数さん垢版2018/11/18(日) 02:10:29.27ID:ENzLbcND
>>877
(1)
 x = sinθ, y = sinφ (-π/2≦θ,φ≦π/2) とおく。
 √(1-xx) = cosθ, √(1-yy) = cosφ,
 x√(1-yy) + y√(1-xx) = sinθcosφ + sinφcosθ = sin(θ+φ),
両辺を2乗する。

(2)(左)
 log{(m+n+1)!} -(m+n)log(m+n) > (3/2)log(m+n) -(m+n) +0.8918
 log(m!) - m・log(m) < (1/2)log(m) -m +1,
 log(n!) - n・log(n) < (1/2)log(n) -n +1,
辺々引くと
 log{(m+n+1)!} -log(m!) -log(n!) -(m+n)log(m+n) +m・log(m) +n・log(n)
 > (3/2)log(m+n) - (1/2)log(mn) - 1.1082
 > (1/2)log(m+n) + (1/2)log{(m+n)^2 /4mn} + log(2) - 1.1082
 ≧ (1/2)log(m+n) - 0.41505
 ≧ (1/2)log(3) - 0.41505 (m+n≧3)
 = 0.549306

(2)(右)
 (m+n)^{m+n} = (m+n)^{m-n} (m+n)^{2n}
 ≧ m^{m-n} (4mn)^n
 = m^m (4n)^n,

∴ (m+n)^(m+n)/(m^m・n^n) ≧ 4^n,

>>878
(3)
 x/(1+x) は x≧0 で単調増加 (x∈R)
 |a+b| ≦ |a| + |b|
∴ φ(|a+b|) ≦ φ(|a|+|b|)
 = |a|/(1+|a|+|b|) + |b|/(1+|a|+|b|)
 ≦ φ(|a|) + φ(|b|),
0880132人目の素数さん垢版2018/11/18(日) 02:17:09.96ID:ENzLbcND
>>879 (2) (左)

〔補題〕
log(m!) < (m+1/2) log(m) -m+1,
(略証)
{log(k-1) + log(k)}/2 < ∫[k-1,k] log(x)dx より
log(m!) = Σ[k=2,m] log(k)
< ∫[1,m] log(x)dx + (1/2)log(m)
= [ x・log(x) -x ](x=1,m) + (1/2)log(m)
= (m+1/2)log(m) -m +1,

log(n!) < (n +1/2) log(n) -n+1,
(略証)
{log(k-1) + log(k)}/2 < ∫[k-1,k] log(x)dx より
log(n!) = Σ[k=2,n] log(k)
< ∫[1,n] log(x)dx + (1/2)log(n)
= [ x・log(x) -x ](x=1,n) + (1/2)log(n)
= (n+1/2)log(n) -n +1,

log{(m+n+1)!} > (m+n+3/2) log{(m+n+1)!}
= Σ[k=2,m+n+1] log(k)
> ∫[3/2,m+n+3/2] log(x)dx
= [ x・log(x) -x ](x=3/2,m+n+3/2)
= (m+n+3/2) log(m+n+3/2) -(m+n) -(3/2)log(3/2)
> (m+n+3/2) log(m+n) +(3/2) - (m+n) - (3/2)log(3/2)
= (m+n+3/2) log(m+n) - (m+n) + 0.8918023378
0881132人目の素数さん垢版2018/11/18(日) 02:23:36.94ID:ENzLbcND
>>879 (2)(左)

log {(m+n+1)!} > (m+n+3/2) log(m+n) - (m+n) + 0.8918
(略証)
log(k) > ∫[k-1/2,k+1/2] log(x)dx より
log{(m+n+1)!} = Σ[k=2,m+n+1] log(k)
> ∫[3/2,m+n+3/2] log(x)dx
= [ x・log(x) -x ](x=3/2,m+n+3/2)
= (m+n+3/2) log(m+n+3/2) -(m+n) -(3/2)log(3/2)
> (m+n+3/2) log(m+n) +(3/2) - (m+n) - (3/2)log(3/2)
= (m+n+3/2) log(m+n) - (m+n) + 0.8918023378
0882132人目の素数さん垢版2018/11/18(日) 20:34:10.43ID:Fcj0HO3Z
>>877
(1)
右辺-中辺 = [xy - √{(1-xx)(1-yy)}]^2 ≧0,
中辺-左辺 = {x√(1-yy) + y√(1-xx)}^2 ≧0.

 (゚∀゚ )
  ノヽノ) =3 プゥ
  くく
0888132人目の素数さん垢版2018/11/19(月) 01:54:17.81ID:eL1RQpps
〔問題168〕
a,b,c>0 のとき
 (aa-bc)(b+c)^r + (bb-ca)(c+a)^r + (cc-ab)(a+b)^r ≧ 0, (0<r<1)
                          ≦ 0, (r>1, r<0)
  V.Cirtoaje:"Algeblaic inequalities"、1-1-7
 inequalitybot [168]
0889132人目の素数さん垢版2018/11/19(月) 02:03:20.14ID:eL1RQpps
>>888

 x = (b+c)^r,
 y = (c+a)^r,
 z = (a+b)^r,
とおくと
 a = (y^{1/r} + z^{1/r} - x^{1/r})/2,
 b = (z^{1/r} + x^{1/r} - y^{1/r})/2,
 c = (x^{1/r} + y^{1/r} - z^{1/r})/2,

 aa-bc = {y^(2/r) +z^(2/r) -x^(1/r)[y^(1/r) + z^(1/r)]}/2,
 bb-ca = {z^(2/r) +x^(2/r) -y^(1/r)[z^(1/r) + x^(1/r)]}/2,
 cc-ab = {x^(2/r) +y^(2/r) -z^(1/r)[x^(1/r) + y^(1/r)]}/2,

(左辺) = (aa-bc)x + (bb-ca)y + (cc-ab)z
 = {x^(2/r)y +xy^(2/r) -(x+y)(xy)^(1/r)}/2 + ……
 = (x^{1/r} - y^{1/r})(x^{1/r -1} - y^{1/r -1})xy + ……
0890132人目の素数さん垢版2018/11/19(月) 09:27:44.83ID:eL1RQpps
>888 訂正

〔問題168〕
a,b,c>0 のとき
 (aa-bc)(b+c)^r + (bb-ca)(c+a)^r + (cc-ab)(a+b)^r > 0, (r<1)
                          < 0, (r>1)
                          = 0, (r=1)
0891132人目の素数さん垢版2018/11/19(月) 09:57:43.41ID:eL1RQpps
>>885
y>0 とする。
 (1 + y/2)^2 > 1+y > 1,
∴ 1/(1+y/2)^2 < 1/(1+y) < 1,
0〜y で積分すると
 y/(1+y/2) < log(1+y) < y,
∴ (1+y)^(1/y) < e < (1+y)^(1/y + 1/2),
y=1/x とおく。
0894132人目の素数さん垢版2018/11/19(月) 10:34:04.63ID:eL1RQpps
>>892

log(k) > (1/2)log(kk-dd) = {log(k+d) + log(k-d)}/2,

y=log(x) は上に凸だから、x=kでの接線より下側にある。
k-d<x<k+d かつ接線より下の台形の面積は(接線の傾きによらず)2d log(k)
∴ 2d log(k) > ∫[k-d,k+d] log(x)dx
0897132人目の素数さん垢版2018/11/19(月) 13:19:03.28ID:Merao6vt
>>896
無理だった。

>>881
> = (m+n+3/2) log(m+n+3/2) -(m+n) -(3/2)log(3/2)
> > (m+n+3/2) log(m+n) +(3/2) - (m+n) - (3/2)log(3/2)

の部分で、以下はどうやって分かるのですか?
(m+n+3/2) log(m+n+3/2) > (m+n+3/2) log(m+n) + (3/2)
0900132人目の素数さん垢版2018/11/20(火) 00:02:55.19ID:5+1z6eBQ
>>899
さんくす。

x=a(>0) における log x の接線を考えて、
 (x-a)/a + log a ≧ log x.
x=1, a = (N+d)/N を代入すればいいのかな。
0902132人目の素数さん垢版2018/11/20(火) 02:59:32.68ID:5+1z6eBQ
>>877(2)左側

0≦x≦1 において f(x) = x^m (1-x)^n は x = m/(m+n) で最大値をとる.

I(m,n) = ∫[0,1] f(x)dx とおくと, I(m,n) ≦ f(m/(m+n)) より
(m!*n!)/{(m+n+1)!} ≦ {(m^m)(n^n)}/{(m+n)^{m+n}}

[東京医科歯科大学2013数学第3問]
0903132人目の素数さん垢版2018/11/21(水) 16:55:51.41ID:LdWYnCJ+
>>856-857
大昔のPutnumに、これより弱い不等式があったよね。

>>885
Moreau's inequality が思い浮かぶと同時に、一松先生を思い出す。(謎掛け)
0904132人目の素数さん垢版2018/11/21(水) 21:37:39.12ID:LdWYnCJ+
三角形の辺長 a,b,c に対して、
(1) Σ[cyc] aa(b+c-a) ≦3abc.
(2) Σ[cyc] aab(a-b) ≧0.

そもそも(1)は辺長でなくても非負実数で成り立つでおじゃるな。
0905132人目の素数さん垢版2018/11/22(木) 00:31:23.80ID:x/Au2Ugh
>>904
(1)
(右辺) - (左辺) = a(a-b)(a-c) + b(b-c)(b-a) + c(c-a)(c-b) = F1(a,b,c) ≧ 0,
 △である必要はない。

(2)
a = y+z、b = z+x、c = x+y とおく。(Ravi変換)
(左辺) = aab(a-b) + bbc(b-c) + cca(c-a)
= 2(xyyy+yzzz+zxxx) - 2xyz(x+y+z)
= (2/7)(2xyyy +yzzz +4zxxx -7xxyz) + cyc.
≧ 0,
 IMO-1983, A.6
 文献[9] 佐藤(訳) (2013) 問題2.24
 Inequalitybot [24]
0908132人目の素数さん垢版2018/11/22(木) 02:23:23.48ID:x/Au2Ugh
>>856 >>903 >>906

27th Putnum-1966
A2.
A triangle has sides a, b, c. The radius of the inscribed circle is r. Show that
 1/(b+c-a)^2 + 1/(c+a-b)^2 + 1/(a+b-c)^2 ≧ 1/(2r)^2,
0913132人目の素数さん垢版2018/11/22(木) 16:30:26.57ID:x/Au2Ugh
>>910

√(x-1) = X,
√(y-1) = Y,
とおく。
XX-X+1 ≧ X,
YY-Y+1 ≧ Y,
(右辺) - (左辺) = xy - x√(y-1) - y√(x-1)
 = (XX+1)(YY+1) - (XX+1)Y - (YY+1)X
 = {(XX+1)-X} {(YY+1)-Y} - XY
 ≧ XY - XY
 = 0,

あるいは
x = (cosh u)^2, y = (cosh v)^2 とおく。
0917132人目の素数さん垢版2018/11/23(金) 11:36:47.43ID:hLVWs+G2
>>916 は「美しい不等式pp.69-70」にあるが、証明が美しくないよな。
普通に差をとったら綺麗にできるのになあ。
0920132人目の素数さん垢版2018/11/23(金) 15:59:31.52ID:eRIDJVQi
>>916 >>917
 x = (b+c-a)/2, y = (c+a-b)/2, z = (a+b-c)/2,
とおく。(Ravi変換)
普通に差をとったら出来ますね^^
 2bc - a(b+c-a) = 2(x+z)(x+y) - 2x(y+z) = 2xx + 2yz ≧ 0,

文献[9] 佐藤(訳) §2.2 例2.2.1 p.69 (2013)
0921132人目の素数さん垢版2018/11/23(金) 16:55:45.35ID:hLVWs+G2
>>917 >>920
なるほど、Ravi変換は無敵でござるな。

この問題を問題集で見て感じたのは、三角形の成立条件を使った例なのに、
三角形の成立条件が一目で分かりにくい小汚い計算をしていた点。

b,cについて対称だから b≧cとする所まではいい。次のようにした方が美しいと思わん?

aが最大または最小のとき、
 2bc - a(b+c-a) = bc + (a-b)(a-c) > 0.

aがbとcの間の数のとき、b≧a≧cだから、
 2bc - a(b+c-a) = (a-c)(c+a-b) + c(b+c-a) > 0.
0923132人目の素数さん垢版2018/11/24(土) 01:13:59.36ID:OpCiwKZy
>>922
a, b, c, r > 0 に対して (ab)^{r+1/2} (aa+bb-2cc) ≧ (ab-cc) (a+b) (cc)^r,

(略証)
(左辺) - (右辺)
≧ (a+b)(ab)^{r+1} - (a+b)(ab)^r・cc - (ab-cc)(a+b)(cc)^r
= (a+b)(ab-cc) [(ab)^r - (cc)^r]
≧ 0,
0924132人目の素数さん垢版2018/11/24(土) 01:30:44.11ID:R0eGczxp
>>915 + >>922
a, b >0 に対して、aabb(aa+bb-2) ≧ ab(ab-1)(a+b) ≧ (ab-1)(a+b).

つまり改造後の不等式は、より強い式でござる ( ゚∀゚) ウヒョッ!
調子に乗って、さらに改造すると、

a, b >0 に対して、{√(ab)}*(aa+bb-2) ≧ (ab-1)(a+b).
0926132人目の素数さん垢版2018/11/24(土) 04:44:14.38ID:OpCiwKZy
>>923
(左辺) ≧ (a+b)(ab)^{r+1} - (a+b)(ab)^r・cc
= (a+b)(ab-cc)(ab)^r
≧ (a+b)(ab-cc)(ab)^(r-1) cc
≧ ……
≧ (a+b)(ab-cc)(ab)(cc)^(r-1)
≧ (a+b)(ab-cc)(cc)^r
= (右辺),
0927132人目の素数さん垢版2018/11/24(土) 22:03:32.05ID:R0eGczxp
(1) a,b,c∈Rに対して、
  (a^5+b^5+c^5)^2 ≧ 3abc(a^7+b^7+c^7).
(2) x,y,z>0, xyz=1に対して、
  (x^10+y^10+z^10)^2 ≧ 3(x^13+y^13+z^13).
0929132人目の素数さん垢版2018/11/25(日) 00:37:10.99ID:AuW29Ma5
>>522 (D1)

 f '(x) < (3/2)^(1/3) f(x) = 1.14471424 f(x),

60th Putnam (1999/Dec/04) B-4

〔補題〕
 lim(x→-∞) F(x) ≧0,
 F '(x) > 0 for all x∈R
ならば
 F(x) > 0 for all x∈R
(背理法で示せる。)

 g(x) = (3/2)f(x)^3 - {f '(x)}^3,
とおくと
 g '(x) = 3f '(x) {(3/2)f(x)^2 - f '(x)f "(x)} ≡ 3f '(x) h(x),
 h '(x) = 3f(x) f '(x) - f '(x) f '''(x) - {f "(x)}^2
  = f '(x) {f(x) - f '''(x)} + {2f(x) f '(x) - [f "(x)]^2}
  ≡ f '(x) {f(x) - f '''(x)} + L(x),
 L '(x) = 2f '(x){f(x) - f '''(x)} + {f '(x)}^2 > 0,
補題により
 L(x) = 2f(x) f '(x) - [f "(x)]^2 > 0,
 h '(x) > 0,
補題により
 h(x) = (3/2)f(x)^2 - f '(x)f "(x) > 0,
 g '(x) > 0,
補題により
 g(x) = (3/2)f(x)^3 - {f '(x)}^3 > 0,
 f '(x) < (3/2)^(1/3) f(x),
0933132人目の素数さん垢版2018/11/25(日) 22:54:06.18ID:Lv92uXqz
(1)
a,b,c∈R, r>0 に対して、
a(b+c)^r + a(b+c)^r + a(b+c)^r ≧0.

(2)
a,b,c>0 に対して
√(aa+ab+bb) + √(bb+bc+cc)√(cc+ca+aa) ≧ 3√(ab+bc+ca).

(3)
a,b,c∈R に対して、次式をみたすkの最大値を求めよ.
abc(a+b+c)^2 ≧ k(ab+bc+ca)(a+b-c)(b+c-a)(c+a-b).

------------------------------------------
http://www.imomath.com/othercomp/Journ/ineq.pdf
1831, 1394, 1120
0934132人目の素数さん垢版2018/11/25(日) 23:17:46.77ID:AuW29Ma5
>>931

>>533 >>534 より

(A^3 + B^3 + C^3)^2 - (AB+BC+CA)(A^4 + B^4 + C^4) = F_0(A, B, C) F_0(AA, BB, CC) + F_1(BC, CA, AB) ≧ 0,

F_n(x,y,z) = (x^n)(x-y)(x-z) + (y^n)(y-z)(y-x) + (z^n)(z-x)(z-y) ≧ 0,
0935132人目の素数さん垢版2018/11/26(月) 04:45:07.58ID:JAq6ovHt
>>933

1831. (p.74)
 a,b,c ∈ R, r>0 は奇数 のとき
 a(a+b)^r + b(b+c)^r + c(c+a)^r ≧ 0,

1394. (p.51)
(略解)
AM-GM で
(左辺) ≧ 3{(ab+bb+aa)(bb+bc+cc)(aa+cc+ca)}^(1/6)
 ≧ 3√(ab+bc+ca),   (←コーシー)

1120. (p.34)
(略解)
a,b,c ≧ 0 とする。
{b+c-a, c+a-b, a+b-c} の中の2つの和は非負だから、負であるものは高々1つ。
いずれかが負の場合は、任意のk>0 について
(左辺) ≧ 0 ≧ (右辺).
以下では b+c-a≧0, c+a-b≧0, a+b-c≧0, k=3 とする。
(左辺) - (右辺) = abc(a+b+c)^2 - 3(ab+bc+ca)(a+b-c)(b+c-a)(c+a-b)
= c(a+b-c)(3a+3b-c)(a-b)^2 + a(b+c-a)(3b+3c-a)(b-c)^2 + b(c+a-b)(3c+3a-b)(c-a)^2 ≧ 0,
等号成立は a=b=c のとき。
0936132人目の素数さん垢版2018/11/26(月) 05:26:09.09ID:JAq6ovHt
>>933

1126. (p.34)
 0 < x ≦ 1 に対して次を示せ。
 x < sinh(x) < 3x/{1+1+√(1-xx)} < tan(x),

1270. (p.44)
 x>0 に対して次を示せ。
 x/√(1+xx) < tanh(x) < √{1-exp(-xx)} < x,
0937132人目の素数さん垢版2018/11/26(月) 06:28:31.22ID:P3VGSuRj
>>933 >>935
> (2)
> a,b,c>0 に対して
> √(aa+ab+bb) + √(bb+bc+cc)√(cc+ca+aa) ≧ 3√(ab+bc+ca).

my collection に次式を発見、しかし詳細不明。
a,b,c∈R に対して、
√(aa+ab+bb) + √(bb+bc+cc)√(cc+ca+aa) ≧ (3/2)*(a+b+c).
0938132人目の素数さん垢版2018/11/26(月) 09:39:29.12ID:P3VGSuRj
>>859-861
n≧4では、逆向きが成り立つという仮説を立ててみた。
n=2,3のとき、 (3/4)*(1 + A/H)^2 ≧ (A/G)^n + (G/H)^n + 1
n≧4のとき、 (3/4)*(1 + A/H)^2 ≦ (A/G)^n + (G/H)^n + 1
0941132人目の素数さん垢版2018/11/27(火) 02:28:27.59ID:QMhuYErk
>>938
n≧4 のとき
(右辺) = (A/G)^n + (G/H)^n + 1^n
≧ 2(A/H)^(n/2) + 1   (AM-GM)
≧ (3/4){1 + (A/H)^(n/4)}^2,

2xx +1 - (3/4)(x+1)^2 = (x-1)(5x-1)/4 ≧ 0, (x≧1)

>>939
That's what I wanna know. (それは こっちが訊きたい...)

>>940
5点で等号成立ですね…
(a,b,c,d) = (1,1,1,1) (3,1,1,1) (1,3,1,1) (1,1,3,1) (1,1,1,3)
0942132人目の素数さん垢版2018/11/27(火) 03:19:22.59ID:QMhuYErk
>>937
 xx+xy+yy = (3/4)(x+y)^2 + (1/4)(x-y)^2 ≧ (3/4)|x+y|^2,
より
 (左辺) ≧ (√3)/2・(|a+b|+|b+c|+|c+a|)
 ≧ (√3)/2・|2a+2b+2c|
 = (√3)|a+b+c|,

ab+bc+ca ≧ 0 ならば 1394. が成立。 >>933 (2)
0944132人目の素数さん垢版2018/11/27(火) 03:51:33.88ID:oixSVMNZ
>>937
a,b,c∈R に対して、
√(aa+ab+bb) + √(bb+bc+cc) + √(cc+ca+aa) ≧ (3/2)*|a+b+c|.

[証]
xx+xy+yy - (x+ y/2)^2 = (3/4)*y^2 ≧0
∴ √(xx+xy+yy) ≧ |x+ y/2|

√(aa+ab+bb) + √(bb+bc+cc) + √(cc+ca+aa)
≧ |a+ b/2| + |b+ c/2| + |c+ a/2|
≧ |(a+ b/2) + (b+ c/2) + (c+ a/2)|
= (3/2)*|a+b+c|.

等号成立条件は a=b=c=0.
---------------------

>>942の等号成立条件は a=b=c だから、上式は緩くて次式が良いってことですかね?
√(aa+ab+bb) + √(bb+bc+cc) + √(cc+ca+aa) ≧ (√3)|a+b+c|.
0946132人目の素数さん垢版2018/11/27(火) 17:31:28.13ID:oixSVMNZ
>>911で紹介して頂いたサイトから検索してみた。

>>887
>  n=4 のとき、(A-G)/(G-H) ≧ 9/16
>  CGMO-2011 A.4
>  inequalitybot [35]

a,b,c,d>0, abcd=1に対して、
1/a + 1/b + 1/c + 1/d + 9/(a+b+c+d) ≧(25/4).

(3数) https://artofproblemsolving.com/community/c6h497071
(3数) https://artofproblemsolving.com/community/c6h506861p2847126
(4数) https://artofproblemsolving.com/community/c6h422665p2389389
(n数) https://artofproblemsolving.com/community/c6h354052
(類題)http://www.mathoe.com/dispbbs.asp?boardID=107&;ID=44556 →>>940

うーむ、分からん…。
0947132人目の素数さん垢版2018/11/27(火) 23:19:46.82ID:QMhuYErk
>>938
 n≧4 のとき
 (A/G)^n + (G/H)^n + 1 ≧ 3([(A/G)^2 + (G/H)^2 + 1]/3)^{n/2} ≧ 3([(A/H) + (A/H) + 1]/3)^{n/2},

 (A/G)^n + (G/H)^n + 1 ≧ (A/H)^{n/2} + (A/H)^{n/2} + 1≧ 3([(A/H) + (A/H) + 1]/3)^{n/2},

もある…
レス数が950を超えています。1000を超えると書き込みができなくなります。

ニューススポーツなんでも実況