>>627 (Nesbitt-Igarashi)

(略証)
各辺に ab+bc+ca を掛けると コーシー型になる:

{a(bb+bc+cc) + b(cc+ca+aa) + c(aa+ab+bb)} {a/(bb+bc+cc) + b/(cc+ca+aa) + c/(aa+ab+bb)}
 ≧ {a(b+c) + b(c+a) + c(a+b)} {a/(b+c) + b/(c+a) + c/(a+b)}
 ≧ (a+b+c)^2,

そこで ラグランジュの恒等式
 (ax + by + cz)(a/x + b/y + c/z) - (a+b+c)^2 = (ab/xy)(x-y)^2 + (bc/yz)(y-z)^2 + (ca/zx)(z-x)^2,
を使う。

・左辺は
 x = bb + bc + cc,
 y = cc + ca + aa,
 z = aa + ab + bb,
 ax + by + cz = (a+b+c)(ab+bc+ca),     >>621
 (左辺) - (a+b+c)^2 = {a(a+b+c)/(bb+bc+cc)}{b(a+b+c)/(cc+ca+aa)}(a-b)^2 + …

・中辺は
 x = b + c,
 y = c + a,
 z = a + b,
 ax + by + cz = 2(ab+bc+ca),
 (中辺) - (a+b+c)^2 = {a/(b+c)}{b/(c+a)}(a-b)^2 +{b/(c+a)}{c/(a+b)}(b-c)^2 + {c/(a+b)}{a/(b+c)}(c-a)^2,

ここで、
 (a+b+c)/(bb+bc+cc) > (b+c)/(bb+bc+cc) > 1/(b+c),
 (a+b+c)/(cc+ca+aa) > (c+a)/(cc+ca+aa) > 1/(c+a),
 (a+b+c)/(aa+ab+bb) > (a+b)/(aa+ab+bb) > 1/(a+b),
だから
 (左辺) ≧ (中辺).

* (x,y,z) はもっと改良できるかも…