X



トップページ数学
1002コメント517KB
不等式への招待 第9章 [無断転載禁止]©2ch.net
■ このスレッドは過去ログ倉庫に格納されています
0001不等式ヲタ ( ゚∀゚)
垢版 |
2017/09/13(水) 11:20:03.95ID:i1anpb+k
ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
          ___          ----- 参考文献〔3〕 P.65 -----
    |┃三 ./  ≧ \   
    |┃   |::::  \ ./ | 
    |┃ ≡|::::: (● (● |  不等式と聞ゐちゃぁ
____.|ミ\_ヽ::::... .ワ......ノ     黙っちゃゐられねゑ…
    |┃=__    \           ハァハァ
    |┃ ≡ )  人 \ ガラッ

【まとめWiki】 http://wiki.livedoor.jp/loveinequality/

【過去スレ】
・不等式スレッド (第1章) http://science3.2ch.net/test/read.cgi/math/1072510082/
・不等式への招待 第2章 http://science6.2ch.net/test/read.cgi/math/1105911616/
・不等式への招待 第3章 http://science6.2ch.net/test/read.cgi/math/1179000000/
・不等式への招待 第4章 http://science6.2ch.net/test/read.cgi/math/1245060000/
・不等式への招待 第5章 http://uni.2ch.net/test/read.cgi/math/1287932216/
・不等式への招待 第6章 http://uni.2ch.net/test/read.cgi/math/1332950303/
・不等式への招待 第7章 http://rio2016.2ch.net/test/read.cgi/math/1362834879/
・不等式への招待 第8章 http://rio2016.2ch.net/test/read.cgi/math/1498378859/
・過去スレのミラー置き場 http://cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/

【姉妹サイト】
キャスフィ 高校数学板 不等式スレ  http://www.casphy.com/bbs/test/read.cgi/highmath/1169210077/
キャスフィ 高校数学板 不等式スレ2 http://www.casphy.com/bbs/test/read.cgi/highmath/1359202700/

【wikiなど】
Inequality (mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
List of inequalities
https://en.wikipedia.org/wiki/List_of_inequalities
List of triangle inequalities
https://en.wikipedia.org/wiki/List_of_triangle_inequalities
Wolfram MathWorld
http://mathworld.wolfram.com/topics/Inequalities.html
0733132人目の素数さん
垢版 |
2018/10/01(月) 00:50:29.88ID:eM2YcEDk
>>724 の補題を改良

〔補題'〕
k≧2 のとき (k^k)/k! < e^(k-1) < (k^k)/(k-1)!

(略証)
(1 -1/jj)^j > 1 -1/j,   … AM-GM
(1 +1/j)^j = (1 -1/jj)^j /(1 -1/j)^j > 1/(1 -1/j)^(j-1) = {1 +1/(j-1)}^(j-1),
∴ (1 +1/j)^j = {(j+1)/j}^j はjについて単調増加
∴ {(j+1)/j}^j < e,
j=1,2,…,k-1 を入れて掛けると
 (k^k)/k! < e^(k-1),

{jj/(jj-1)}^j > (1 +1/jj)^j > (1 +1/j),   … AM-GM
∴ {j/(j-1)}^j = {jj/(jj-1)}^j・(1 +1/j)^j > (1+1/j)^(j+1)
∴ (1 +1/j)^(j+1) = {(j+1)/j}^(j+1) はjについて単調減少
∴ {(j+1)/j}^(j+1) > e,
j=1,2,…,k-1 を入れて掛けると
 (k^k)/(k-1)! > e^(k-1),

分かスレ447-448
0734132人目の素数さん
垢版 |
2018/10/01(月) 08:28:02.86ID:eM2YcEDk
>>725 (1)

Tのn個の固有値d_j を主対角線に並べた実対角行列を D とし、
対応する固有ベクトルw_j を各列に並べた行列をWとする。
 T w_j = w_j d_j,
 T W = W D,
n個の固有ベクトルw_jが1次独立のとき |W|≠0 で Tは対角化可能。
 T = W D W^(-1),
T≧0 すなわち Tの固有値がすべて非負のとき、Dの対角要素が非負で、√Dも実対角行列。
 T = W D W^(-1) = {W √D W^(-1)}^2 = U^2,

Tが実対称行列のときは、固有ベクトルを適当に選んでWを実直交行列にとれる。
 W^(-1) = W~
0735132人目の素数さん
垢版 |
2018/10/01(月) 08:34:53.76ID:jOqQMyBJ
>>732
訂正
A+B≧√2(AB+BA)は成り立つかでした
0736132人目の素数さん
垢版 |
2018/10/01(月) 08:35:39.23ID:jOqQMyBJ
√{2(AB+BA)}っすな
0737132人目の素数さん
垢版 |
2018/10/02(火) 21:43:18.74ID:6WqYSECx
a, b, c >0 に対して、
a/{b(b+c)^2} + b/{c(c+a)^2} + c/{a(a+b)^2} ≧ 9/{4(ab+bc+ca)}

今年も不等式の秋が来ましたな。
9/{4(ab+bc+ca)} の出てくる不等式は過去スレで扱ったな。
0738132人目の素数さん
垢版 |
2018/10/02(火) 22:15:34.85ID:6WqYSECx
x, y ∈ R に対して、

(1) 1/(x+1)^2 + 1/(y+1)^2 ≧ 1/(xy+1)

(2) a^3 + b^3 + c^3 - 3abc ≦ (a^2 + b^2 + c^2)^(3/2)
0739132人目の素数さん
垢版 |
2018/10/02(火) 22:20:09.91ID:6WqYSECx
a, b, c > 0 に対して、

(1) 3 + √{(a^2 + b^2 + c^2)(1/a^2 + 1/b^2 + 1/c^2)} ≧ (2/3)(a+b+c)(1/a + 1/b + 1/c)

(2) √{(a^4 + b^4 + c^4)(1/a^4 + 1/b^4 + 1/c^4)} ≧ 1 + √[1 + √{(a^5 + b^5 + c^5)(1/a^5 + 1/b^5 + 1/c^5)}]

(3) a^4/(a^3 + b^3) + b^4/(b^3 + c^3) + c^4/(c^3 + a^3) ≧ (a+b+c)/3

(4) {(a-b)/c}^2 + {(b-c)/a}^2 + {(c-a)/b}^2 ≧ (2√2)*{(a-b)/c + (b-c)/a + (c-a)/b}

(5) a/{√(2b^2+2c^2)} + b/(c+a) + c/(a+b) ≧ 3/2

(6) a+b+c=3 のとき、44 ≧ (a^2+2)(b^2+2)(c^2+2) ≧ 27



参考 (2) https://artofproblemsolving.com/community/q1h1328831p7152622
0740132人目の素数さん
垢版 |
2018/10/02(火) 22:39:23.54ID:6WqYSECx
むかし立ち読みした本に、不等式の証明を行列を使ってやっていたんだけど、どんな本を検索したら見つかりますかね?
0741132人目の素数さん
垢版 |
2018/10/03(水) 03:42:16.06ID:7h2ip4rW
>>737
9/{4(ab+bc+ca)} の出てくる不等式…

〔問題〕
a,b,c > 0 に対して
 1/(b+c)^2 + 1/(c+a)^2 + 1/(a+b)^2 ≧ 9/{4(ab+bc+ca)},

イランMO-1996
Inequalitybot [148]

>>738
(1)
 (x, y) = (2 -1/n, -1/2),
 1/(xy+1) = 2n,

(2)
 a+b+c = s, ab+bc+ca = t とおく。
 |a^3+b^3+c^3-3abc| = |a+b+c| (aa+bb+cc-ab-bc-ca)
 = |s| (ss-3t)
 ≦ (ss-2t)^(3/2)      (← GM-AM)
 = (aa+bb+cc)^(3/2),

*) ss≧0, ss-3t≧0 より、AM-GM で
 (ss-2t)^3 - ss(ss-3t)^2 = (3ss -8t)tt = (1/3){8(ss-3t) +ss}tt ≧ 0,
0742132人目の素数さん
垢版 |
2018/10/03(水) 16:46:30.48ID:7h2ip4rW
>>738 (2) を改造^^

a,b,c∈R に対して
 | a^3+b^3+c^3 - 3abc |^2 ≦ (aa+bb+cc)^3 - (ab+bc+ca)^3,

(略証)
 s = a+b+c, t = ab+bc+ca とおく。
 (ss-2t)^3 - t^3 - ss(ss-3t)^2 = 3(ss-3t)tt ≧ 0,
 (左辺) = ss(ss-3t)^2 ≦ (ss-2t)^3 - t^3 = (右辺),
0743132人目の素数さん
垢版 |
2018/10/03(水) 16:56:34.73ID:7h2ip4rW
>>738 (2) を改造^^

a,b,c∈R に対して
 | a^3+b^3+c^3 - 3abc |^2 ≦ (aa+bb+cc)^3 + 8(ab+bc+ca)^3,

(略証)
 s = a+b+c, t = ab+bc+ca とおく。
 (ss-2t)^3 + (2t)^3 - ss(ss-3t)^2 = 3sstt ≧ 0,
 (左辺) = ss(ss-3t)^2 ≦ (ss-2t)^3 + (2t)^3 = (右辺),
0746132人目の素数さん
垢版 |
2018/10/04(木) 02:15:28.34ID:wFWA09/F
>>739
(3)
a^4 - (a^3+b^3)(a-kb) = {k(a^3+b^3) -abb} b
 = {k[a^3 +(1/2)b^3 +(1/2)b^3] -abb} b
 ≧ {3k/(2^(2/3)) -1} ab^3,    (AM-GM)
(係数) ≧0 より
 k = (1/3)・2^(2/3) = 0.529133684

 a^4/(a^3 + b^3) ≧ a - kb,
循環的にたす。
 (左辺) ≧ (1-k)(a+b+c) = 0.470866316 (a+b+c).
0747132人目の素数さん
垢版 |
2018/10/04(木) 05:59:28.01ID:wFWA09/F
>>742>>609 (2), >>612 にござる。

>>739 (6) 右側 は >>616 >>618

 (aa+2)(bb+2)(cc+2) = uu + 2(tt-2su) + 4(ss-2t) + 8
 = (uu+1+1) + (2/3)(t-3)^2 + (4/3)(tt-3su) + (ss-4t) + 3ss
 ≧ 3ss,

※ (uu+1+1) + (ss-4t) ≧ 3u^(2/3) + {F1(a,b,c)-9u}/s
 = 3{u^(2/3) -3u/s} + F1(a,b,c)/s
 ≧ 0,
0748132人目の素数さん
垢版 |
2018/10/05(金) 00:10:36.73ID:7iOX1iCn
>>618 >>739 (6) >>747

a,b,c ≧ 0, a+b+c ≦ √(8k) のとき
 kk{(a+b+c)^2 +k} ≧ (aa+k)(bb+k)(cc+k) ≧ (3kk/4)(a+b+c)^2,

左側は
 a+b+c ≦ √(8k) より
 ab ≦ (1/4)(a+b)^2 ≦ 2k,
 (a+b)c ≦ (1/4)(a+b+c)^2 ≦ 2k,

 (aa+k)(bb+k) = k{(a+b)^2 +k} - ab(2k-ab) ≦ k{(a+b)^2 +k},

∴ (aa+k)(bb+k)(cc+k) ≦ k{(a+b)^2 +k}(cc+k) = kk(ss+k) -k(a+b)c{2k-(a+b)c} ≦ kk(ss+k),
0749132人目の素数さん
垢版 |
2018/10/05(金) 06:07:13.55ID:7iOX1iCn
>>741 (上)

4(ab+bc+ca){1/(b+c)^2 + 1/(c+a)^2 + 1/(a+b)^2} - 9
= {ab(4aa+7ab+4bb)(a-b)^2 + bc(4bb+7bc+4cc)(b-c)^2 + ca(4cc+7ca+4aa)(c-a)^2 + (2abc)F_1(a,b,c)}/{(a+b)(b+c)(c+a)}^2
= {4t・F_2+(3tt/s)F_1+(9tu/s)F_0+(st-9u)u} / (st-u)^2
≧ 0,

F_n (a,b,c) = (a^n)(a-b)(a-c) + (b^n)(b-c)(b-a) + (c^n)(c-a)(c-b) ≧ 0,
0751132人目の素数さん
垢版 |
2018/10/07(日) 09:38:24.95ID:0iw9KjaT
さあ、はじめようか?
>>737の左辺は、どこに挟まるのでござるかな?

{a/(2bc)}^2 + {b/(2ca)}^2 + {c/(2ab)}^2
≧ 1/(4a^2) + 1/(4b^2) + 1/(4c^2)
≧ 1/(4ab) + 1/(4bc) + 1/(4ca)
≧ 1/(b+c)^2 + 1/(c+a)^2 + 1/(a+b)^2 ← (>>741, >>749)
≧ 9/{4(ab+bc+ca)}
≧ 1/{(a+b)(b+c)} + 1/{(b+c)(c+a)} + 1/{(c+a)(a+b)}
≧ 9/{(a+b)(b+c) + (b+c)(c+a) + (c+a)(a+b)}
≧ 27/{4(a+b+c)^2}
≧ 9/{(a+b)^2 + (b+c)^2 + (c+a)(a+b)^2}
≧ 9/{4(a^2 + b^2 + c^2)}

 " ;ヾ ; ;";ヾ; ;"/" ; ;ヾ ;ヾ;ヾ ; ;ヾ ; ; ヾ ;ゞ  " ;ヾ ; ;";ヾゝゝ" ;ヾゞ           ヽ            /
,." ;ヾ ; ;";ヾ; ;"/" ; ;ヾ ;ヾ;ヾ ; ;ヾ ; ; ヾ ;ゞ  " ;ヾ ; ;";ヾゝゝ" ;ヾ ; ; ヾ ;ゞ;        \        /
 ゞヾ ; ;" ; ; ;; ;"iiiiii;;;;;::::: :)_/ヽ,.ゞ:,,ヾゞヾゞ__;::/        `      `        `   ー ─ ' `
   ゞヾゞ;\\iiiiii;;;;::::: :|;:/ヾ; ;ゞ "ゝゞ ; ;`
 " ;゛ ; ;" ; ;ゞ "|iiiiii;;;;::: : |:/ ヾゞ        `         `      ` `
  `      ,|i;iiiiiii;;;;;;::: :| `    `         `     `      ` `   `
        ,|iiii;iiii;;;;:;_ _: :| ___  不等式の秋    `        `        `,
   `    |iiiiiii;;;;;;((,,,):::|/  ≧ \                    ヾ从//"
    `   |iiiiiiii;;;;ii;;;;;;;;::|::::: (● (● |           `  ゙  `    ヾ'./"
         |iiiiii;iii;;;;i;;:: ::::|ヽ::::......ワ...ノ                 ○     .||.       ,
    `   |iii;;iiiii;::;:;;;;::::::| ( つ且 ~      `              ○○   | |
  , , .,.. ,..M|M|iMii;;ii:i;;i:i;:; ゝ つつ.,.. ,...... ,.... ,,,.,.. ,.... ,,,.,.. ,..,,,,.,...,..,.,| ̄ ̄|,.,..(  ).. ,,,..,,.. ,.... ,,,.,...,.. .. ,.... ,,,.,.. ,.... ,,,
0752132人目の素数さん
垢版 |
2018/10/07(日) 10:33:46.31ID:0iw9KjaT
a, b, c > 0に対して、
(a^2 + 3b^2)(b^2 + 3c^2)(c^2 + 3a^2) ≧ {(a-b)(b-c)(c-a)}^2 ←(>>709-710)

a, b, c > 0に対して、
(a^2 + ab + b^2)(b^2 + bc + c^2)(c^2 + ca + a^2) ≧ {(a-b)(b-c)(c-a)}^2.

ところで
(a^2 + 3b^2)(b^2 + 3c^2)(c^2 + 3a^2) と (a^2 + ab + b^2)(b^2 + bc + c^2)(c^2 + ca + a^2)
の大小は定まりそうにないですが、どうですか?
0753132人目の素数さん
垢版 |
2018/10/07(日) 17:27:07.24ID:0iw9KjaT
>>748
神掛かってる!
大量投下したやつを今ごろ確認しているところでござるが、関連する昨夏の不等式を再掲。
(自分のmemoから抜き出したので、未紹介のものもあるかもしれない。)

a、b、c∈R、k≧0、4≧λ≧0 に対して、
(1) (aa+k)(bb+k)(cc+k) ≧ (3kk/4)*(a+b+c)^2
(2) (aa+k)(bb+k)(cc+k) ≧ {(4k/3)^(3/2)}*(a-b)(b-c)(c-a)
(3) (aa+k)(bb+k)(cc+k) ≧ (kk/4)*{λ(aa+bb+cc) + (9-λ)(ab+bc+ca)}
(4) {aa+ (k+1)/3}{bb+ (k+1)/3}{cc+ (k+1)/3} ≧ {(k+4)/3}^2*{ab+bc+ca+ (k-5)/3}

a、b、c∈R、k≧1 に対して、
(5) (aa+k)(bb+k)(cc+k) ≧ (k+1)^2*(ab+bc+ca+k-2) + (abc-1)^2

a、b、c∈R、k≧2 に対して、
(6) (aa+k)(bb+k)(cc+k) ≧ (k+1)(ab+bc+ca+k-2)^2

a、b、c∈R、k≧(√2)-1 に対して、
(7) (aa+k)(bb+k)(cc+k) ≧ (k+1)^2*{(a+b+c)^2/3 + k-2}
0755132人目の素数さん
垢版 |
2018/10/07(日) 18:16:09.56ID:0iw9KjaT
>>748
> a,b,c ≧ 0, a+b+c ≦ √(8k) のとき
>  kk{(a+b+c)^2 +k} ≧ (aa+k)(bb+k)(cc+k) ≧ (3kk/4)(a+b+c)^2,

左側の等号成立条件は a=b=c=k=0 以外にありますか?
0757132人目の素数さん
垢版 |
2018/10/07(日) 18:42:14.42ID:0iw9KjaT
連投すまぬ。
a,b,cのうちの2つが0なら成り立ちますね。他にないかな?
0758132人目の素数さん
垢版 |
2018/10/07(日) 19:18:13.82ID:0iw9KjaT
>>755
a,b,cのうちの少なくとも2つが0、
a,b,cのうちの一つが0で、2つが√(2k)のとき

これだけかな?
0759132人目の素数さん
垢版 |
2018/10/08(月) 02:39:14.27ID:OXto1iGE
>>738 (1)
x, y >0 として証明。
lhs - rhs = {xy(x-y)^2 + (xy-1)^2}/{(x+1)^2 (y+1)^2 (xy+1)} ≧0.

一般化できるかな?つまり、
x,y,z>0 のときに、1/(x+1)^2 + 1/(y+1)^2 + 1/(z+1)^2 ≧ 1/(xyz+1) は成り立つ?
0760132人目の素数さん
垢版 |
2018/10/08(月) 03:25:37.55ID:OXto1iGE
4文字なら、a,b,c,d>0に対して、

1/(1+a)^2 + 1/(1+b)^2 + 1/(1+c)^2 + 1/(1+d)^2
≧ 1/(1+ab) + 1/(1+cd)
> 1/(1+abcd).
0761132人目の素数さん
垢版 |
2018/10/08(月) 03:40:58.25ID:moWJj/Va
〔補題〕
(1) 4(2-√3) > (√6 -√2),
(2) 12(2-√3) > 4(2-√3) + 2(√6 -√2) > 3(√6 -√2),
(3) (√2 +√3) > 2(√6 -√2) + 4(2-√3),
(4) 22/7 > 2(√6 -√2) + 4(2-√3),
(5) 6 + (√6 -√2) > (√5)(√2 +√3),
0762132人目の素数さん
垢版 |
2018/10/08(月) 04:06:45.56ID:moWJj/Va
>>761
(1)
 √3 -1 ≒ 0.7320508   1/√2 ≒ 0.70710678
 (左辺) - (右辺) = 2(√3 -1)(√3 -1 -1/√2) > 0,
(2)
 (1) から直ちに出る。
(3)
 (左辺) - (右辺) = (1/4)(√2 -1)^2・(√3 -1)^4・(√3 -√2) > 0,
(4)
 (左辺) - (右辺) = (1/14)(√2 -1)^3・(√3 -1)^4・(3√6 -7) > 0,
(5)
 さてどうするか…

なお、Snellius-Huygens から、2(√6 -√2) + 4(2-√3) > π が分かる。
0764132人目の素数さん
垢版 |
2018/10/08(月) 17:08:48.13ID:moWJj/Va
>>759
s = x+y+z, t = xy+yz+zx, u = xyz とおく。

lhs - rhs = {3+4s+2ss+2(st-3u)+(tt-2su)}/(u+t+s+1)^2 - 1/(u+1)
 = {2+2s+(ss-2t)-5u+2(ss-t)u+2(st-9u)u+11uu+(tt-2su)u}/{(u+t+s+1)^2・(u+1)},
 ≧0.        (← x,y,z≧0)

* 2 -5u +11uu = 63/44 + 11(5/22 -u)^2 ≧ 63/44,
0766132人目の素数さん
垢版 |
2018/10/09(火) 04:15:31.03ID:CC0qY+GR
n変数にして証明できますかね?
a_k >0 (k=1,2,…n) に対して、Σ1/(1+a_k)^2 ≧ 1/(1+Πa_k).
0767132人目の素数さん
垢版 |
2018/10/09(火) 05:55:14.05ID:CC0qY+GR
x>0に対して、9x^{10} + 2 ≧ 9x^8 + 2x^9 をAM-GMで示せ。
(蛇足だが、この不等式は任意の実数で成り立つ)
0768132人目の素数さん
垢版 |
2018/10/09(火) 06:15:35.95ID:jtiWu+AA
>>766
nについての帰納法でやってみた。

n=2 は >>759 より成立。

n≧3 のとき
(1) x_j ≧ 1 があるとき、帰納法の仮定により
 Σ[k=1,n] 1/(1+a_k)^2 > Σ[k≠j] 1/(1+a_k)^2
 ≧ 1/(1+Π[k≠j] a_k)
 ≧ 1/(1+Π[k=1,n] a_k),

(2) x_1〜x_n がすべて1以下のとき、右辺は増加する。
・n=3 の場合がチョト面倒。
 (右辺) = 1/(xyz+1) - 1/(xy+1)
 = xy(1-z)/{(xyz+1)(xy+1)}
 ≦ xy(1-z)/{xy(z+1)}       (← xy(1-z)≧0)
 = (1-z)/(z+1),
 (左辺) - (右辺) ≧ 1/(xy+1) + 1/(z+1)^2 -1/(xyz+1)  (←帰納法の仮定)
 ≧ 1/(z+1)^2 - (1-z)/(z+1)
 = {z/(z+1)}^2
 ≧ 0,

・n≧4 ならば
 Σ[k=1,n] 1/(1+a_k)^2 ≧ Σ[k=1,n] 1/4   (← a_k≦1)
 = n/4
 ≧ 1
 > 1/(1+Π[k=1,n] a_k),
0769132人目の素数さん
垢版 |
2018/10/09(火) 06:56:44.02ID:jtiWu+AA
>>767

AM-GM より
9x^10 -10x^9 + 1
 = (x-1) (9x^9 -x^8 -x^7 -x^6 -x^5 -x^4 -x^3 -x^2 -x -1)
 = (x-1)^2 (9x^8 +8x^7 +7x^6 +6x^5 +5x^4 +4x^3 +3x^2 +2x +1)
 = (x-1)^2 {5x^8 + (x+1)^2 (4x^6 +3x^4 +2x^2 +1)}
 ≧ 0,

AM-GMより
4x^10 -5x^8 + 1
 = (x^2 -1) (4x^8 -x^6 -x^4 -x^2 -1)
 = (x^2 -1)^2 (4x^6 +3x^4 +2x^2 +1)
≧ 0,

(与式) = {(上) + (下)・9}/5
0771132人目の素数さん
垢版 |
2018/10/09(火) 14:38:57.52ID:jtiWu+AA
>>767

(左辺) - (右辺) = 2(4x^10 -5x^8 +1) + {(x-1)x^4}^2

 ≧ 2(4x^10 -5x^8 +1)

 = 2{(X^5 + X^5 + X^5 + X^5 + 1) - 5 X^4}   (← X=x^2≧0)

 ≧ 0,

最後のところで AM-GM を使いました。
0772132人目の素数さん
垢版 |
2018/10/09(火) 16:36:47.68ID:CC0qY+GR
>>767
AM-GMより、
x^{10} + x^9 ≧ 2x^9,
8x^{10} + 2 ≧ 10x^8. (x^8 が8個と 1が2個)

辺々加えて、
9x^{10} + 2 + x^8 ≧ 10x^8 + 2x^9.

( ゚∀゚) ウヒョッ!
0773132人目の素数さん
垢版 |
2018/10/09(火) 18:11:28.36ID:CC0qY+GR
>>738(1) >>759 >>764 >>768
> x,y,z>0 のとき、1/(x+1)^2 + 1/(y+1)^2 + 1/(z+1)^2 ≧ 1/(xyz+1).

右辺を見て次の不等式を思い出したが、繋がるかな?

x,y,z>0 のとき、1/{x(1+y)} + 1/{y(1+z)} + 1/{z(1+x)} ≧ 3/(1+xyz).
0774132人目の素数さん
垢版 |
2018/10/09(火) 18:46:04.69ID:jtiWu+AA
>>767

p_0 = 9,
p_1(x) = 6.19544630295     + (x-0.03352960039751934)^2 p_0 > 0,
p_2(x) = 3.8953637526451576 + (x-0.003121543171869486)^2 p_1(x) > 0,
p_3(x) = 2.0721715662084579 + (x+0.08618793580133872)^2 p_2(x) > 0,
p_4(x) = x^8 + 2(x+1)^2 (4x^6 +3x^4 +2x^2 +1),
    = 0.5197441948878409 + (x+0.8393520966569508138)^2 p_3(x) > 0,
p_5(x) = 9x^10 -2x^9 -9x^8 +2 = (x-1)^2 p_4(x) > 0,

( ゚∀゚) ウヒョッ!
0776132人目の素数さん
垢版 |
2018/10/09(火) 20:03:46.82ID:CC0qY+GR
>>768
> n≧3 のとき
> (1) x_j ≧ 1 があるとき、帰納法の仮定により
>  Σ[k=1,n] 1/(1+a_k)^2 > Σ[k≠j] 1/(1+a_k)^2

不等号が逆向きになりませんか?

  Σ[k=1,n] 1/(1+a_k)^2 < Σ[k≠j] 1/(1+a_k)^2
0778132人目の素数さん
垢版 |
2018/10/09(火) 21:22:11.48ID:CC0qY+GR
>>737
(問題再掲)
> a, b, c >0 に対して、
> a/{b(b+c)^2} + b/{c(c+a)^2} + c/{a(a+b)^2} ≧ 9/{4(ab+bc+ca)}

(証明)
(ab+bc+ca)*[a/{b(b+c)^2} + b/{c(c+a)^2} + c/{a(a+b)^2}]
≧ [ √(ab*a/{b(b+c)^2}) + √(bc*b/{c(c+a)^2}) + √(ca*c/{a(a+b)^2}) ]^2
= [ a/(b+c) + b/(c+a) + c/(a+b) ]^2
≧ (3/2)^2.

  ∧_∧
  ( ;´∀`) < シコシコ、ネビットの順に使うナリ。
  人 Y /
 ( ヽ し
 (_)_)
0779132人目の素数さん
垢版 |
2018/10/09(火) 23:28:00.13ID:jtiWu+AA
>>759 >>766 >>768

n≧3 のとき
p = Π[k=1,n-1] a_k, z = a_n とおく。

(右辺) = 1/(p・z+1) - 1/(p+1)
 = p(1-z)/{(p・z+1)(p+1)}
 = Max{ p(1-z)/{(p・z+1)(p+1)}, 0}
 ≦ Max{ (1-z)/(z+1), 0}
 ≦ 1/(z+1)^2,
∴ (左辺) - (右辺) ≧ 0,

>>775
 p_k(x) は 2k次の多項式。
 p_5(x) = (左辺) - (右辺) = 9x^10 -2x^9 -9x^8 +2,
 p_k(x) の最小値を b_k とし、そのときのxを a_k とする。
 p_{k-1}(x) = {p_k(x) - b_k}/(x-a_k)^2,
0780132人目の素数さん
垢版 |
2018/10/10(水) 05:28:35.94ID:hapOoDe1
>>746
するってぇと、こういうことかい?

k = (1/n)*(n-1)^{(n-1)/n} とおくとき、a,b,c>0 に対して、
a^{n+1}/(a^n + b^n) + b^{n+1}/(b^n + c^n) + c^{n+1}/(c^n + a^n) ≧ (1-k)(a+b+c).
0781132人目の素数さん
垢版 |
2018/10/10(水) 10:06:50.14ID:hapOoDe1
>>710
一般の自然数nの場合に右辺はどうなるのでせうか? 次式は成り立ちますか?

a,b,c>0に対して、
(a-b)(a-c)a^n + (b-c)(b-a)b^n + (c-a)(c-b)c^n ≧ (n+1){(a-b)(b-c)(c-a)}^2.
0783132人目の素数さん
垢版 |
2018/10/10(水) 19:47:02.29ID:hapOoDe1
a,b,c>0とし、Δ= (a-b)(b-c)(c-a)とおく。昨夏にやった不等式について。

(1) (27/8)*(a^2+b^2)(b^2+c^2)(c^2+a^2) ≧ (a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2) ≧ (a^2+b^2)(b^2+c^2)(c^2+a^2) ≧ Δ^2
(2) k*Δ^2 ≧ (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2) ≧ Δ^2
(3) m*Δ^2 ≧ (a-b)(a-c)a^4 + (b-c)(b-a)b^4 + (c-a)(c-b)c^4 ≧ 5Δ^2

(疑問1) k、mの値を知りたい。
(疑問2) (1)もΔ^2の定数倍で挟みたい。
0784132人目の素数さん
垢版 |
2018/10/11(木) 03:47:19.96ID:XBFA4KXK
>>760
 1/(1+ab) + 1/(1+cd) > 1/(1+ab/2)^2 + 1/(1+cd/2)^2 > 1/(1+abcd/4),
 >>738(1) >>759

>>773 (下)
 1/{x(1+y)} + 1/{y(1+z)} + 1/{z(1+x)} ≧ 3/{G(1+G)} ≧ 3/(1+xyz),
 G = (xyz)^(1/3),

 バルカンMO-2006
 [8] 安藤哲哉 (2014) 例題3.1.7(4)
 [9] 佐藤淳郎[訳] (2013) 問題3.93
 Inequalitybot [77]

>>783
 例えば a=b≠c ⇒ =0
0785132人目の素数さん
垢版 |
2018/10/11(木) 17:32:09.43ID:XBFA4KXK
・n=2
 1/(1+a)^2 + 1/(1+b)^2 > 1/(1+ab),   >>759(上)

・n=3
 1/(1+a)^2 + 1/(1+b)^2 + 1/(1+c)^2 > 1/(1+abc/2),   >>759(下) >>773(上)

・n=4
 1/(1+a)^2 + 1/(1+b)^2 + 1/(1+c)^2 + 1/(1+d)^2 > 1/(1 + abcd/4),   >>760 >>784

・nについての帰納法で >>784
 Σ1/(1+a_k)^2 ≧ 1/{1 + 4Π(a_k /2)},
0786132人目の素数さん
垢版 |
2018/10/12(金) 02:23:37.06ID:UbVFOF8C
>>785 念のため…

〔補題〕
 n≧2, a_k≧0 (k=1〜n) のとき
 Σ[k=1, n] 1/(1+a_k)^2 ≧ 1/{ 1 + (Π[k=1, n] a_k) /2^(n-2) },

(略証)
nについての帰納法による。
・n=2 のとき
 >>759 (上)
・n≧3 のとき
(左辺) = Σ[k=1, n] 1/(1+a_k)^2
 ≧ 1/{1 + (Π[k=1, n-1] a_k) /2^(n-3) } + 1/(1+a_n)^2   (←帰納法の仮定)
 ≧ 1/{1 + (Π[k=1, n-1] a_k) /2^(n-2) }^2 + 1/(1+a_n)^2
 ≧ 1/{1 + (Π[k=1, n] a_k) /2^(n-2) }           ( >>759 上)
 = (右辺).
0787132人目の素数さん
垢版 |
2018/10/12(金) 04:07:57.14ID:f607XAs3
(a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2) を同じ式で挟むとしたら、こんなもん?

(a^2+b^2)(b^2+c^2)(c^2+a^2)
≧ (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)
≧ (8/27)*(a^2+b^2)(b^2+c^2)(c^2+a^2)


>>784
成程、a=bのときを考えれば凾ナ挟めないのは明らかですね。

>>786
ちょうど悩んでいたところで助かりますた。
直近でやった不等式が使えるとは、偶然以上の何かを感じる…
0788132人目の素数さん
垢版 |
2018/10/12(金) 05:35:02.53ID:UbVFOF8C
>>753

(1)  (aa+k)(bb+k)(cc+k) ≧ (3kk/4)ss + (u-K)^2,   ただし K = (k/2)^(3/2),
   [前スレ.456] [前スレ.469] >>4 [3]

(略証)
 (aa+k)(bb+k)(cc+k) = uu + k(tt-2su) + kk(ss-2t) + k^3
 = {uu + 2(k/2)^3} + (2k/3)(tt-3su) + (k/3)(t-3k/2)^2 + kk(ss-t) + (3kk/4)ss
 ≧ (u-K)^2 + (k/3)(t-3k/2)^2 + (2k/3)(tt-3su) + (kk/4){ss-4t+3u^(2/3)} + (3kk/4)ss
 = (u-K)^2 + (k/3)(t-3k/2)^2 + (2k/3)(tt-3su) + (kk/4s)F1(a,b,c) + (3kk/4)ss,

※ uu + 2(k/2)^3 = uu + 2KK = (u-K)^2 + K(u+u+K) ≧ (u-K)^2 + (3kk/4)u^(2/3),
  ただし K = (k/2)^(3/2),
  ss -4t +3u^(2/3) ≧ ss -4t +9u/s = F1(a,b,c)/s,

(3) はλ=4 が最良で、
  (aa+k)(bb+k)(cc+k) ≧ (kk/4)(4ss-3t) + (u-K)^2,   但し K = (k/2)^(3/2),
  [前スレ.469] >>4 [4] >>36
0789132人目の素数さん
垢版 |
2018/10/12(金) 06:10:22.02ID:f607XAs3
去年、アイゼンシュタイン整数を使って、a,b,c>0に対して、

(1) (a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2) ≧ (3√3/8)*|(a^2-bc)(b^2-ca)(c^2-ab)|,
(2) (a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2) ≧ (3√3/8)*(ab+bc+ca)^3

が出て、でも(2)は次より弱いから無視。

(3) (a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2) ≧ (ab+bc+ca)^3

もっと細かく書くと、

(a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2)
≧ (27/64)*(a+b)^2 (b+c)^2 (c+a)^2
≧ (1/3)*(a+b+c)^2 (ab+bc+ca)^2
≧ (ab+bc+ca)^3.

------------------------------------------------
(疑問1) 同様にやったら、次が成り立つと思うんですが、計算合ってます蟹?

(1)’ (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2) ≧ (3√3/8)*|(a^2-bc)(b^2-ca)(c^2-ab)|,
(2)’ (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2) ≧ (3√3/8)*|ab-bc+ca|^3

------------------------------------------------
(疑問2) (2)より強い(3)があったように、(2)’より強い次式って成り立ちますか?
2乗の差をとって計算していたのですが、挫折しますた。

(3)’(a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2) ≧|ab-bc+ca|^3
0791132人目の素数さん
垢版 |
2018/10/12(金) 09:29:09.68ID:f607XAs3
------------------------------------------------
(疑問3) a,b,c>0 に対して、
4(a^2 + b^2 + c^2)^3 ≧ (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)

が成り立つけど、左辺の係数の4をもっと小さくできないだろうか?

(左-右 = 12t(F_0)^2 + 12t^2 F_0 + 4t^3 + (2F_1 - st + 9u)^2 ≧0)

------------------------------------------------
(疑問4) 以前やった2つの不等式
a,b,c>0 に対して、(a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2) ≧ {(a-b)(b-c)(c-a)}^2,
a,b,c∈Rに対して、(a^2+b^2+c^2)^3 ≧ 2{(a-b)(b-c)(c-a)}^2

の左辺について、a,b,c>0 に対して何か不等式は作れないだろうか? 👀
Rock54: Caution(BBR-MD5:1341adc37120578f18dba9451e6c8c3b)
0793132人目の素数さん
垢版 |
2018/10/12(金) 21:08:11.69ID:f607XAs3
(1) a,b,c∈R に対して、8(a^2+b^2)(b^2+c^2)(c^2+a^2) ≧ (a+b)^2 (b+c)^2 (c+a)^2.
(2) a,b,c∈R に対して、2(a^2+b^2)(b^2+c^2)(c^2+a^2) ≧ (a-b)^2 (b-c)^2 (c-a)^2.
(3) a,b,c>0 に対して、(a^2+b^2)(b^2+c^2)(c^2+a^2) ≧ (a-b)^2 (b-c)^2 (c-a)^2.

(2),(3) に比べて (1)の左辺の係数8が大きいですが、これが限界?
(1)の条件を a,b,c>0 に変えたら、係数は小さくできるかな?
最良値かどうかを判断する考え方がイマイチ分かりませぬ… ('A`)
0794132人目の素数さん
垢版 |
2018/10/13(土) 03:26:19.86ID:OSa6VDkO
>>789

(3) (aa+ab+bb)(bb+bc+cc)(cc+ca+aa) ≧ (1/3)sstt ≧ |t|^3,

(略証)
 ss±3t = {(a±b)^2 + (b±c)^2 + (c±a)^2}/2 ≧ 0,  (複号同順)
∴ |t| ≦ ss/3,

(疑問1)
(1)' … 1
 (aa-ab+bb)(bb-bc+cc)(cc-ca+aa) - (aa-bc)(bb-ca)(cc-ab)
= {(a-b)cc}^2 + {(b-c)aa}^2 + {(c-a)bb}^2 + (abc)^2
 ≧ 0,
 (aa-ab+bb)(bb-bc+cc)(cc-ca+aa) + (aa-bc)(bb-ca)(cc-ab)
 = {(a-b)ab}^2 + {(b-c)bc}^2 + {(c-a)ca}^2 + (abc)^2
 ≧ 0,

(2)' … 1/27
(疑問2) … 1/27
(3)’(aa-ab+bb)(bb-bc+cc)(cc-ca+aa) ≧ (1/81)sstt ≧ (1/27)|t|^3,
  (3) と同様に出ます。(*) 右辺はtのままです。
0795132人目の素数さん
垢版 |
2018/10/13(土) 03:29:35.03ID:OSa6VDkO
>>791 >>792

(疑問3) … 3/8
 (aa-ab+bb)(bb-bc+cc)(cc-ca+aa) = (ss-3t)(tt-3su) + stu -8uu,

(左辺) - (右辺)
 = (3/8)(aa+bb+cc)^3 - (aa-ab+bb)(bb-bc+cc)(cc-ca+aa)
 = (3/8)(ss-2t)^3 - (ss-3t)(tt-3su) -stu +8uu
 = (1/32)(3s^3 -10st +16u)^2 + (3/32){s(ss-2t)}^2  (←uで平方完成)
 ≧ 0,
 等号成立は (a, 0, -a) etc.
0796132人目の素数さん
垢版 |
2018/10/13(土) 03:48:21.26ID:OSa6VDkO
>>794
 絶対値は間違いです...orz

(3) (aa+ab+bb)(bb+bc+cc)(cc+ca+aa) ≧ (1/3)sstt,

(3)’(aa-ab+bb)(bb-bc+cc)(cc-ca+aa) ≧ (1/81)sstt,
0797132人目の素数さん
垢版 |
2018/10/13(土) 07:40:05.27ID:OSa6VDkO
>>794 >>795 >>796

aa+ab+bb = (3/4)(a+b)^2 + (1/4)(a-b)^2,
aa-ab+bb = (1/4)(a+b)^2 + (3/4)(a-b)^2,
(a+b)(b+c)(c+a) = st-u ≧ 8st/9,

(3)
 (aa+bb+cc)^3 ≧ (27/8)(aa+bb)(bb+cc)(cc+aa)     AM-GM
 ≧ (aa+ab+bb)(bb+bc+cc)(cc+ca+aa)
 ≧ (1/3){9(a+b)(b+c)(c+a)/8}^2
 ≧ (1/3)sstt,

(3')
 (3/8)(aa+bb+cc)^3 ≧ (aa-ab+bb)(bb-bc+cc)(cc-ca+aa)
 ≧ {(a+b)(b+c)(c+a)/8}^2
 ≧ (1/81)sstt,

>>794 (1)' から >>611 (6)
0798132人目の素数さん
垢版 |
2018/10/13(土) 07:46:23.21ID:OSa6VDkO
>>791
(疑問4)
 (上) >>752 (中)
 (下) >>609 (3)

>>793

(1) これが限界。 a=b=c で等号が成立するなら、a,b,c>0 に変えても同じぢゃね?

(2) (1-i)(a+ib)(b+ic)(c+ia) = -(a-b)(b-c)(c-a) + i{(a+b)(b+c)(c+a) - 4abc},
   >>609 (4) >>615
0800132人目の素数さん
垢版 |
2018/10/14(日) 05:52:44.82ID:Rg/i5zok
>>741
> |s| (ss-3t) ≦ (ss-2t)^(3/2)      (← GM-AM)

どのように相加相乗を使っているのですか?
0801132人目の素数さん
垢版 |
2018/10/14(日) 06:14:49.66ID:Rg/i5zok
742-743を見て、探してみたが、意外と少なかった… ('A`)ヴォエァ!

------------------------------------------
不等式スレ内を検索して

a^3+b^3+c^3-3abc : >>29>>738>>742-743
a^3+b^3+c^3+3abc : 第5章>>269、第2章>>372

------------------------------------------
My Collections から (出典不明)

(1) a,b,c∈Rに対して、(a^2+b^2+c^2)^3 ≧ (a^3+b^3+c^3-3abc)^2 + (ab+bc+ca)^3
(2) a,b,c≧に対して、a^3+b^3+c^3-3abc ≧ (1/4)*(a+b-2c)^3
0802132人目の素数さん
垢版 |
2018/10/14(日) 19:32:20.99ID:0CPQSloM
>>28 (2), >>29 (1), [前スレ.262], [初代スレ.836-869]
「楠瀬の不等式」
出典: 数学セミナー、出題:1992年4月、解説:1992年7月

a,b,c ∈ R に対して
 aa+bb+cc ≧ |ab| + |bc| + |ca| ≧ |ab+bc+ca|,
>>742 >>743 から
 | a^3+b^3+c^3 - 3abc |^2 ≦ (aa+bb+cc)^3 - |ab+bc+ca|^3.

>>800
 {ss, ss-3t, ss-3t} はいずれも非負。
 AM = ss-2t,  GM = {s(ss-3t)}^(2/3).
0803132人目の素数さん
垢版 |
2018/10/14(日) 19:47:58.72ID:Q7SdFY73
(x_1+…+x_n)/n=xとするとき、
(Σ(x_k-x)^3)^2 と (Σ(x_k-x)^2)^3 の大小について何か言えますか?
Σはk=1からnまでの和です。
0804132人目の素数さん
垢版 |
2018/10/15(月) 01:00:34.63ID:TBaDGY4B
>>803

(x_1 + x_2 + … + x_n) /n = A とおくとき、

( Σ[j=1,n] (x_j - A)^3 )^2 / ( Σ[k=1,n] (x_k - A)^2 )^3 ≦ (n-2)^2 /n(n-1) < 1,

等号成立は {a,…,a, b} など。
0805132人目の素数さん
垢版 |
2018/10/15(月) 08:43:04.04ID:TBaDGY4B
>>801 (1) は >>609 (2), >>742 と同じでつね。
>>802 (中) の方がチョト強い。

>>803
n=3 のとき
{(x-A)^2 + (y-A)^2 + (z-A)^2}^3 - 6{(x-A)^3 + (y-A)^3 + (z-A)^3}
= 2{(x-y)(y-z)(z-x)}^2 + (x+y+z-3A){……}

(略証)
(x-A)^3 + (y-A)^3 + (z-A)^3 = 3(x-A)(y-A)(z-A) + (x+y+z-3A){……} = 3(x-A)(y-A)(z-A),
より
{(x-A)^2 + (y-A)^2 + (z-A)^2}^3 - 6{(x-A)^3 + (y-A)^3 + (z-A)^3}
= 2{(x-y)(y-z)(z-x)}^2 + (x+y+z-3A){ …… }
≧ 0,
0806132人目の素数さん
垢版 |
2018/10/15(月) 09:33:15.98ID:r7ZX+DeY
>>805
むむむ…


ところで、ちょっと作ったんだけど、係数はこれが最善かな?
a,b,c∈R に対して、(a^2+b^2+c^2)^3 ≧ (27/16)*{(a-b)(b-c)(c-a)}^2.
0807132人目の素数さん
垢版 |
2018/10/15(月) 11:27:35.52ID:TBaDGY4B
>>806 … 2 ぢゃね?
 >>791 (疑問4・下) >>609 (3)


>>802
〔楠瀬の不等式〕
x,y,z ≧ 0 のとき
 x^3 + y^3 + z^3 -3xyz = (x+y+z)(xx+yy+zz-xy-yz-zx) ≧ A|(x-y)(y-z)(z-x)|,
ここに A = √(9+6√3) = √{(3/2)√3}(1+√3) = 4.403669475

(略証)
 (左辺) - (右辺) = (x^3 +y^3 +z^3 -3xyz) - A|(x-y)(y-z)(z-x)|
 = (1/2)(x+y+z){(x-y)^2 +(y-z)^2 +(z-x)^2} - A|(x-y)(y-z)(z-x)|,

 x,y,z の間隔を固定して一斉に動かしても、{ … } 内と右辺は変わらない。
 最小元が 0 のときに成り立てばよい。 以下 z=0 とする。

 (左辺) - (右辺) = x^3 -A xy|x-y| +y^3,

・0≦x≦y のとき
 x^3 + A xy(x-y) + y^3 = (x + y/αα)(x-αy)^2,
  α = {(1+√3) - √(2√3)}/2 = 0.43542054468234
  1/αα = (1+√3) + A/√3 = 5.27451056440629

・0≦y≦x のとき
 x^3 - Axy(x-y) + y^3 = (x + y/ββ)(x-βy)^2
  β = {(1+√3) + √(2√3)}/2 = 2.29663026289
  1/ββ = (1+√3) - A/√3 = 0.18959105073

 αβ = 1,
0809132人目の素数さん
垢版 |
2018/10/15(月) 12:36:41.62ID:r7ZX+DeY
a,b,c∈R に対して、(a^2+b^2+c^2)^3 ≧ k(a^2+b^2)(b^2+c^2)(c^2+a^2)

k = 27/8 が限界かと思うけど、2になりますかね?
0810132人目の素数さん
垢版 |
2018/10/15(月) 12:53:20.17ID:TBaDGY4B
>>806 >>807

(略証)
 bはaとcの中間にあるとしてよい。
 0 ≦ (a-b)(b-c) ≦ (1/4)(a-c)^2,
∴ aa+cc = (1/2)(a+c)^2 + (1/2)(a-c)^2 ≧ (1/2)(a-c)^2,
∴ (aa+cc)^3 ≧ (1/8)(a-c)^6 ≧ 2(a-c)^2 {(a-b)(b-c)}^2 = 2刧,
 >>609 (3), >>612 より再録
0811132人目の素数さん
垢版 |
2018/10/16(火) 00:51:28.34ID:5DYkLdwz
>>805

 (x-A) + (y-A) + (z-A) = 0,
x-A と y-A が同符号のとき
 (z-A)^2 = {(x-A) + (y-A)}^2 ≧ 4|(x-A)(y-A)|,
より
 (x-A)^2 + (y-A)^2 + (z-A)^2 = (1/2)(x+y-2A)^2 + (1/2)(x-y)^2 + (z-A)^2
 = (3/2)(z-A)^2 + (1/2)(x-y)^2
 ≧ (3/2)(z-A)^2,

{(x-A)^2 + (y-A)^2 + (z-A)^2}^3 ≧ (27/8)(z-A)^6 ≧ 6{3(x-A)(y-A)(z-A)}^2


>>809
 k = 27/8 ですね。 A,B,C≧0 より
(左辺) - (右辺) = (A+B+C)^3 -(27/8)(A+B)(B+C)(C+A)
 = S^3 - (27/8)(ST-U)
 = (S^3 -4ST +9U) + (5/8)(ST-9U)
 ≧ 0,
0812132人目の素数さん
垢版 |
2018/10/16(火) 03:14:15.05ID:K3TfA7ci
>>802
> a,b,c ∈ R に対して
>  aa+bb+cc ≧ |ab| + |bc| + |ca| ≧ |ab+bc+ca|,
> >>742 >>743 から
>  | a^3+b^3+c^3 - 3abc |^2 ≦ (aa+bb+cc)^3 - |ab+bc+ca|^3.

下の2行が分かりませぬ…。
0816132人目の素数さん
垢版 |
2018/10/17(水) 02:05:16.29ID:CNsWZSmr
>>815

SP.172
Prove that for any real numbers x,y,z:
(x+y+z)(y+z-x)(z+x-y)(x+y-z) ≦ (2yz)^2.

SP.173
 Prove that for any positive real numbers x,y,z:
 {xx√(yy+zz) + yy√(zz+xx) + zz√(xx+yy)} / (x^3+y^3+z^3) ≦ √2.

SP.174
Prove that for any positive real numbers a,b,c,x,y,z:
 (a^3+x^3+x^3+x^3)(y^3+b^3+y^3+y^3)(z^3+z^3+c^3+z^3) ≧ (ayz+bzx+cxy+xyz)^3.

SP.179 (改)
 If x ∈ [0,1) then:
1/2 < cos(x) ≦ 1 ≦ arcsin(x) + e^(-x).

UP.177
 If x,y,z,t >1 then:
 {log(x)/log(ztx)} {log(y)/log(txy)} {log(z)/log(xyz)} {log(t)/log(yzt)} < 1/16.
0817132人目の素数さん
垢版 |
2018/10/17(水) 03:59:20.74ID:CNsWZSmr
>>815
解答作りますた。

SP.172
 (x+y+z)(y+z-x) = (y+z)^2 -xx = 2yz - (xx-yy-zz),
 (z+x-y)(x+y-z) = xx - (y-z)^2 = 2yz + (xx-yy-zz),
辺々掛ける。
 (左辺) = (2yz)^2 - (xx-yy-zz)^2 ≦ (2yz)^2,

(*) x,y,z がΔの3辺の場合は、Δの面積が2辺の積の半分以下であることを表わす。

SP.173
 (左辺)^2 ≦ 3x^4・(yy+zz) + 3y^4・(zz+xx) + 3z^4・(xx+yy)
  = x^3・{3(xyy + xzz)} + y^3・{3(yzz + yxx)} + z^3・{3(zxx + zyy)}
  ≦ x^3・{(x^3+y^3+y^3) + (x^3+z^3+z^3)} + y^3・{(y^3+z^3+z^3) + (y^3+x^3+x^3)} + z^3・{(z^3+x^3+x^3) + (z^3+y^3+y^3)}
  = 2(x^3+y^3+z^3)^2,
  
SP.174
 コーシーそのもの。

SP.179
 arcsin(x) ≧ x, (0≦x<1)
 e^(-x) ≧ 1 - x,
辺々たす。

UP.177
 X=log(x), Y=log(y), Z=log(z), T=log(t) はすべて正だから AM-GM で
 Z+T+X ≧ 3(ZTX)^(1/3),
 T+X+Y ≧ 3(TXY)^(1/3),
 X+Y+Z ≧ 3(XYZ)^(1/3),
 Y+Z+T ≧ 3(YZT)^(1/3),
辺々掛けて
 (Z+T+X)(T+X+Y)(X+Y+Z)(Y+Z+T) ≧ 81 XYZT,

(左辺) = X/(Z+T+X)・Y/(T+X+Y)・Z/(X+Y+Z)・T/(Y+Z+T) ≦ 1/81,
0819132人目の素数さん
垢版 |
2018/10/17(水) 06:46:49.96ID:TTcOhpLB
ROMANIAN MATHEMATICAL MAGAZINE (RMM 11)、解答なし
http://www.ssmrmh.ro/wp-content/uploads/2018/09/11-RMM-WINTER-EDITION-2018-1.pdf
JP158、JP165、SP164、SP165など、いかがでござるか?

JP165の右辺を見て、毒電波を受信した。

a,b,c∈R に対して、
√{6(a^2+b^2+c^2)} ≧ √(a^2+b^2) + √(b^2+c^2) + √(c^2+a^2) ≧ 2√(a^2+b^2+c^2)


---------------------------------------------
ROMANIAN MATHEMATICAL MAGAZINE って、不等式専門雑誌なん?
最新2回分には解答が公開されないっぽい。
http://www.ssmrmh.ro/category/current-issue/
---------------------------------------------
0821132人目の素数さん
垢版 |
2018/10/17(水) 06:51:20.00ID:TTcOhpLB
解答のない号で、三角形がらみ(a,b,c,R,r,S,A,B,Cのみ)、シンプル、既出でないものを抽出。

ROMANIAN MATHEMATICAL MAGAZINE (RMM 12)
http://www.ssmrmh.ro/wp-content/uploads/2018/09/12-RMM-SPRING-EDITION-2019-2.pdf
JP173、JP179、UP171、UP175

ROMANIAN MATHEMATICAL MAGAZINE (RMM 11)
http://www.ssmrmh.ro/wp-content/uploads/2018/09/11-RMM-WINTER-EDITION-2018-1.pdf
JP157、UP155


ところで、JP171、JP174、JP153 などで説明なしに使われている h_a、m_a、l_a などは何を意味するのだろう? 垂線、中線、二等分線かな?
定義が分からないので、見た目がシンプルでも上のリストから外してしまったが…
0822132人目の素数さん
垢版 |
2018/10/17(水) 08:05:48.87ID:TTcOhpLB
>>815-817
SP.173の分母を払った式

(√2)(x^3+y^3+z^3) ≧ x^2√(y^2+z^2) + y^2√(z^2+x^2) +z^2√(x^2+y^2)

を見て、右辺にCSを使えば片付きそうな気がしたが、大きくなり過ぎた。

√{2(x^4+y^4+z^4)(x^2+y^2+z^2)}
≧ (√2)(x^3+y^3+z^3)
≧ x^2√(y^2+z^2) + y^2√(z^2+x^2) +z^2√(x^2+y^2)
0823132人目の素数さん
垢版 |
2018/10/17(水) 08:47:58.61ID:CNsWZSmr
>>819

JP.158
 Let a,b,c>0. Prove that:
  (1/a + 1/b + 1/c) + a/(bb+cc) + b/(cc+aa) + c/(aa+bb) ≧ 1/(a+b) + 1/(b+c) + 1/(c+a),

JP.165 (改)
 If a,b,c≧0 then:
 4(a+b+c) ≦ (2√2){√(aa+bb) + √(bb+cc) + √(cc+aa)},

SP.164 (改)
 If a,b,c > 0 then:
 (a+b)√(aa-ab+bb) + (b+c)√(bb-bc+cc) + (c+a)√(cc-ca+aa) ≧ 2(aa+bb+cc),

SP.165 (改)
 If a,b,c ≧0 then:
 (a+b)√(aa+bb) + (b+c)√(bb+cc) + (c+a)√(cc+aa) ≧ (1/√2){(aa+bb+cc) + (a+b+c)^2},
0824132人目の素数さん
垢版 |
2018/10/17(水) 09:14:42.86ID:CNsWZSmr
>>819 >>823

JP.165 (改)
 x+y ≦ √{2(xx+yy)} より
 4(a+b+c) ≦ (2√2){√(aa+bb) + √(bb+cc) + √(cc+aa)},

SP.164 (改)
コーシーより
 (x+y)√(xx-xy+yy) = √{(x+y)(x^3+y^3)} ≧ xx + yy,
(略証)
 (x+y)^2・(xx-xy+yy) - (xx+yy)^2 = (x+y)(x^3+y^3) - (xx+yy)^2 = xy(x-y)^2 ≧0,

SP.165 (改)
 √(xx+yy) ≧ (x+y)/√2, etc.
 (左辺) ≧ {(a+b)^2 + (b+c)^2 + (c+a)^2}/(√2) ≧ (√2)(aa+bb+cc+t),
 t = ab+bc+ca,

>>819
a,b,c∈R に対して、
√{6(aa+bb+cc)} ≧ √(aa+bb) + √(bb+cc) + √(cc+aa)
 ≧ √{4(aa+bb+cc) + 2t}
 ≧ (√2)s,
 s = a+b+c, t = ab+bc+ca,

(略証)
左側はコーシー
中は √(xx+yy)√(xx+zz) ≧ xx+xy, etc.
 ∵ (xx+yy)(xx+zz) - (xx+yz)^2 = {x(y-z)}^2 ≧ 0, (コーシー)
右側は aa+bb+cc ≧ t.
0825132人目の素数さん
垢版 |
2018/10/17(水) 10:31:10.77ID:CNsWZSmr
>>820

SP.140
 Let a,b,c be positive real numbers. Prove that:
 (b+c)/a + (c+a)/b + (a+b)/c ≧ 4(aa+bb+cc)/(ab+bc+ca) + 2(ab+bc+ca)/(aa+bb+cc) ≧ 6,
0826132人目の素数さん
垢版 |
2018/10/18(木) 03:45:39.48ID:Dw4OfxmO
>>820 >>825

SP.140 (改)
 (b+c)/a + (c+a)/b + (a+b)/c ≧ 4(aa+bb+cc)/(ab+bc+ca) + 2
 ≧ 3(aa+bb+cc)/(ab+bc+ca) + 3(ab+bc+ca)/(aa+bb+cc) ≧ 6,

(略証)
 s = a+b+c, t = ab+bc+ca, u = abc とおく。
(左辺) - 4(ss-2t)/t - 2
 = (st-3u)/u - 4(ss-2t)/t - 2
 = st/u - 4ss/t + 3
 = (s/ttu)(t^3 -4stu +9uu) + (3/tt)(tt-3su)
 ≧ 0,


>>819 >>823 >>824
SP.164 (改) より
 √(xx-xy+yy) > {(xx+yy)/(x+y), M_4} > M_3 > √{(xx+yy)/2} > (x+y)/2 > √(xy) > 2xy/(x+y),

ここに M_r = {(x^r+y^r)/2}^(1/r) はr乗平均, M_1 = (x+y)/2, M_2 = √{(xx+yy)/2},
0827132人目の素数さん
垢版 |
2018/10/18(木) 06:51:05.46ID:Dw4OfxmO
>>821

RMM 12 (Spring2019)

JP.173
 Prove that in any triangle ABC,
  1/a + 1/b + 1/c ≧ √{3/(2Rr)} ≧ (√3)/R.

JP.179
 In acute triangle ABC the following relationship hplds:
 3 ≦ sin(2A)/sin(2B) + sin(2B)/sin(2C) + sin(2C)/sin(2A) ≦ 3/{8cos(A)cos(B)cos(C)},

UP.171
 Find that in any acute-angled triangle ABC the following inequality holds:
 min{a/(b+c), b/(c+a), c/(a+b)} ≦ {cos(A) + cos(B) + cos(C)}/3 ≦ Max{a/(b+c), b/(c+a), c/(a+b)},

UP.175 (改)
 In acute triangle ABC the following relationship holds:
 (b+c)^2/(bb+cc-aa) + (c+a)^2/(cc+aa-bb) + (a+b)^2/(aa+bb-cc) ≧ 12,

等号成立は正△のとき、だろうな…
0828132人目の素数さん
垢版 |
2018/10/18(木) 07:52:45.35ID:Dw4OfxmO
>>819 >>823

RMM 11 (Winter2018)

JP.158 (訂正)
 Let a,b,c>0. Prove that:
  (1/a + 1/b + 1/c) + a/(bb+cc) + b/(cc+aa) + c/(aa+bb) ≧ 3/(a+b) + 3/(b+c) + 3/(c+a),

(略証) チェビシェフしたあと、
 (1/x + 1/y)/2 + (x+y)/{2(xx+yy)} - 3/(x+y)
 = (x+y)/(2xy) + (x+y)/{2(xx+yy)} - 3/(x+y)
 = (x+y)(xx+xy+yy)/{2xy(xx+yy)} - 3/(x+y)
 = (x-y)^2 (xx-xy+yy)/{2xy(xx+yy)(x+y)}
 ≧ 0,
0829132人目の素数さん
垢版 |
2018/10/18(木) 15:11:32.69ID:k/D5nzuI
>>822
√{2(x^4+y^4+z^4)(x^2+y^2+z^2)} にCSを使うと、使い方次第で
≧ (√2)(x^3+y^3+z^3) にも
≧ x^2√(y^2+z^2) + y^2√(z^2+x^2) +z^2√(x^2+y^2) にもなるんだな。
0830132人目の素数さん
垢版 |
2018/10/19(金) 11:50:11.00ID:UmCMoNsS
>>822 >>829
 コーシーとチェビシェフの合わせ技(?)

〔補題〕
 (a,b,c) と (p,q,r) が同順序のとき
 √(aa+bb+cc) √(pp+qq+rr) ≧ (ap+bq+cr) ≧ (a+b+c)(p+q+r)/3 ≧ (aq+ar+bp+bq+cp+cq)/2,

 (a,b,c) と (p,q,r) が逆順序のとき
 √(aa+bb+cc) √(pp+qq+rr) ≧ (aq+qr+bp+br+cp+cq)/2 ≧ (a+b+c)(p+q+r)/3 ≧ (ap+bq+cr),
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況