X



トップページ数学
1002コメント345KB
面白い問題おしえて〜な 二十四問目 [無断転載禁止]©2ch.net
レス数が950を超えています。1000を超えると書き込みができなくなります。
0001132人目の素数さん垢版2017/08/07(月) 00:07:33.27ID:y+VPlwP8
過去ログ
http://www3.tokai.or.jp/meta/gokudo-/omoshi-log/
まとめwiki
http://www6.atwiki.jp/omoshiro2ch/

1 http://cheese.2ch.net/test/read.cgi/math/970737952/
2 http://natto.2ch.net/test/read.cgi/math/1004839697/
3 http://science.2ch.net/test/read.cgi/math/1026218280/
4 http://science.2ch.net/test/read.cgi/math/1044116042/
5 http://science.2ch.net/test/read.cgi/math/1049561373/
6 http://science.2ch.net/test/read.cgi/math/1057551605/
7 http://science2.2ch.net/test/read.cgi/math/1064941085/
8 http://science3.2ch.net/test/read.cgi/math/1074751156/
9 http://science3.2ch.net/test/read.cgi/math/1093676103/
10 http://science4.2ch.net/test/read.cgi/math/1117474512/
11 http://science4.2ch.net/test/read.cgi/math/1134352879/
12 http://science6.2ch.net/test/read.cgi/math/1157580000/
13 http://science6.2ch.net/test/read.cgi/math/1183680000/
14 http://science6.2ch.net/test/read.cgi/math/1209732803/
15 http://science6.2ch.net/test/read.cgi/math/1231110000/
16 http://science6.2ch.net/test/read.cgi/math/1254690000/
17 http://kamome.2ch.net/test/read.cgi/math/1284253640/
18 http://kamome.2ch.net/test/read.cgi/math/1307923546/
19 http://uni.2ch.net/test/read.cgi/math/1320246777/
20 http://wc2014.2ch.net/test/read.cgi/math/1356149858/
21 http://wc2014.2ch.net/test/read.cgi/math/1432255115/
22 http://rio2016.2ch.net/test/read.cgi/math/1464521266/
23 http://rio2016.2ch.net/test/read.cgi/math/1497416499/
0855132人目の素数さん垢版2018/01/24(水) 04:13:19.14ID:9ooAixL8
>>835 >>836 補足

a ≡ a+3 ≡ ±1 (mod 3)
とすると、
aa +(a+3)^2 ≡ 1 + 1 ≡ 2 (mod 3)
一方、
cc ≡ 0,1 (mod 3)
となるので不成立。

a ≡ a+3 ≡ c ≡ 0 (mod 3)に限る。
0856132人目の素数さん垢版2018/01/26(金) 12:03:24.53ID:8Tf4BNki
作用素Hについて、固有値E_k(E_0<E_1<E_2<…)と対応する固有関数ψ_kが存在するとする
であるとする
ここで、固有値Eをもつ関数Ψが存在するとき、NE≧E_0となることを示せ。
ただしN=√(1/(∫|Ψ|^2 dx))
0857132人目の素数さん垢版2018/01/26(金) 12:06:35.17ID:8Tf4BNki
↑訂正
作用素Hについて、固有値E_k(E_0<E_1<E_2<…)と対応する固有関数ψ_k(∫|ψ|^2 dx=1)が存在するとする
ここで固有値Eをもつ関数Ψが存在するとき、NE≧E_0となることを示せ。
ただしN=√(1/(∫|Ψ|^2 dx))
0858132人目の素数さん垢版2018/01/27(土) 13:45:49.81ID:51dP2oKU
中学生でも解ける問題を一つ

半径rの円が3つあり、残り二つの円と互いに外接している。
それぞれの円の周上にP,Q,Rを取る時、三角形PQRの重心Gの動きうる範囲の面積を求めよ。
0859132人目の素数さん垢版2018/01/27(土) 15:06:08.09ID:MA43eYRM
>>857
HP0=E0P0
P=2P0
N=1/4
E=E0
1/4E0≧E0
??
0860132人目の素数さん垢版2018/01/27(土) 15:07:06.83ID:MA43eYRM
N=1/2
0861132人目の素数さん垢版2018/01/27(土) 18:09:12.75ID:me3DxH9X
P=2(p_0)だと固有値Eは2(E_0)
NE=(1/2)2(E_0)=(E_0)
0862132人目の素数さん垢版2018/01/27(土) 21:36:02.22ID:Mtp4B3bf
>>861
>P=2(p_0)だと固有値Eは2(E_0)
なんで?
0863132人目の素数さん垢版2018/01/27(土) 21:41:45.04ID:me3DxH9X
H(2(p_0))=2H(p_0)=2(E_0)(p_0)
0864132人目の素数さん垢版2018/01/27(土) 21:43:11.21ID:me3DxH9X
ちょっと問題文のほうに問題があったね
撤回
0865132人目の素数さん垢版2018/01/27(土) 21:47:10.38ID:me3DxH9X
E≧E_0となることを示せ
0866132人目の素数さん垢版2018/01/27(土) 21:59:09.92ID:me3DxH9X
あとHはエルミート
0867132人目の素数さん垢版2018/01/27(土) 22:07:23.69ID:WDfOMKEo
2の倍数または3の倍数または5の倍数でない自然数について

50番目の数字は何?
0868132人目の素数さん垢版2018/01/27(土) 22:21:48.51ID:ExPNLsIw
1-100
100-(50+33+20-16-6-10+3)=100-74=26

1-200
200-(100+66+40-33-13-20+6)=200-146=54

187,191,193,197,199

187?
0869132人目の素数さん垢版2018/01/27(土) 22:25:35.16ID:WDfOMKEo
>>868
正解
0870132人目の素数さん垢版2018/01/27(土) 22:31:46.23ID:gbbm6MqT
>>858
どうやって解いたものかと思ったが
点P、Q、Rの属する円の中心をそれぞれ点A、B、Cとする。
三角形ABCの重心をFとする
ベクトルF→A、F→B、F→Cの和は
1/3(F→A+F→B+F→C)=F→Fとなるので零ベクトル。
一方、ベクトルF→Gを考えると
F→G=1/3(F→P+F→Q+F→R)
=1/3((F→A+A→P)+(F→B+B→Q)+(F→C+C→R))
=1/3(A→P+B→Q+C→R)
ベクトルA→P、B→Q、C→RとF→P'、F→Q'、F→R'がそれぞれ等しくなるように点P'、Q'、R'をとると、
それらは点Fを中心とする半径rの円(以下円Fとする)の周にある。
F→G=1/3(F→P'+F→Q'+F→R')なので、点Gは円Fに内接する三角形P'Q'R'の重心であり、円Fの内部または周にある。(周にあるのは点P'、Q'、R'が一致するとき)
次に、
円Fの内部に任意の点Hをとるとき、線分FHのH側の延長と円Fの交点に点P'をとり、
H'→H=1/2(H→P')となるような点H'をとると、点H'は円Fの内部にあるので点H'における直線FHとの垂線は円Fと2箇所で交わり、
各々の交点に点Q'、R'をとると、三角形P'Q'R'の重心である点Gは
F→G=1/3(F→P'+F→Q'+F→R')=1/3(2(F→H')+F→R')=1/3((F→H+H→P')+2(F→H-H'→H))=F→Hとなるため
点Hと点Gが一致するように点P、Q、Rを取ることができることがわかる。
同様に円Fの周に点Gをとるには、ベクトルA→P、B→Q、C→RのすべてがF→Gと等しくなるように点P、Q、Rをとればよい。これらの点は各円の周にある。
以上のことから、点Gの存在範囲は円F、すなわち三角形ABCの重心を中心とする半径rの円の周および内部の全域と一致する。
面積はπr^2
0872132人目の素数さん垢版2018/01/28(日) 01:55:15.75ID:ru4HDAPy
>>871

kは非負整数とする。
a_{8k}= 30k -1,
a_{8k+1}= 30k + 1,
a_{8k+2}= 30k + 7,
a_{8k+3}= 30k + 11,
a_{8k+4}= 30k + 13.
a_{8k+5}= 30k + 17,
a_{8k+6}= 30k + 19,
a_{8k+7}= 30k + 23,
0873132人目の素数さん垢版2018/01/28(日) 02:25:15.18ID:QQEABl6G
周期30(8個)
1,7,11,13,17,19,23,29
0874132人目の素数さん垢版2018/01/28(日) 10:41:35.47ID:MjDW5aU2
>>865
なら当たり前じゃんw
固有値の中でE0が最小って
最初に書いてる
0875132人目の素数さん垢版2018/01/29(月) 15:15:53.94ID:Nr3Pwzrb
正三角形ABCの中に点Dをとる
三辺の長さがAD,BD,CDである三角形を作ったとき、その3つの角度はどうなるか?
元のA,B,C,Dで表せ
0876132人目の素数さん垢版2018/01/30(火) 06:28:00.94ID:xcx/0UYn
2円が2点で交わっているとき、2円に引いた接線の長さが等しいような点の軌跡を求めよ。(1行問題)
0878132人目の素数さん垢版2018/01/30(火) 22:47:20.84ID:kRiBvn5X
田舎だから、ろくな高校なくて県内トップの高校だが高校偏差値60、俺の数学の偏差値は進研模試70、駿台模試68な俺。数学に割と自信あって来てみたらレベル高すぎて挫折。みんなは大数とか解いてるのかな( ´・ω・` )
0879132人目の素数さん垢版2018/01/31(水) 01:58:00.18ID:UkP0goc8
>>876
中心o、半径rの円と、中心O、半径Rの円があり、2点 A,B で交わるとする。
中心間の距離oO = d とおく。
oOとABは点Cで直交する。
oC =(dd+rr-RR)/2d,
OC =(dd+RR-rr)/2d,
AB = 4(r,R,d)/d,

直線AB上の点Pから
円oへの接線の長さは
 √(Po^2 - r^2)= √(PC^2 + Co^2 - r^2)= √{PC^2 -(AB/2)^2},
円Oへの接線の長さは
 √(PO^2 - R^2)= √(PC^2 + CO^2 - R^2)= √{PC^2 -(AB/2)^2},
ゆえ一致する。

答え 直線ABのうち、線分ABを除く部分。
0880132人目の素数さん垢版2018/01/31(水) 08:11:27.71ID:EIHOrY2u
差がnになるような立方数と平方数
みたいな問題に一般解ある?
0881132人目の素数さん垢版2018/02/01(木) 01:20:12.16ID:9NvJxwVa
>>880

yy =(重根をもたない3〜4次多項式)

楕円曲線と云うらしい。(楕円ではない。)
数論の中心的課題の一つ。
有理数解についての構造定理(モーデルの定理)がある。
整数解は有限個しか存在しない。
0883132人目の素数さん垢版2018/02/01(木) 02:44:13.73ID:Igkrh3Kq
nを3以上の自然数とする
円に内接するn角形で、面積が最大となるものは正n角形であることを示せ.
0884132人目の素数さん垢版2018/02/01(木) 04:12:29.84ID:ozAVSfgN
>>883
面積最大となる内接n角形が、大きさの異なる中心角(=外接円の中心における辺の両端のなす角度)を隣り合わせに持つと仮定すると、
それらに挟まれる頂点を「中心角の和の二等分線と円との交点」に置き換えた内接n角形は元の内接n角形より面積が大きいため、仮定と矛盾する
よって面積最大の内接n角形はすべての中心角の大きさが等しい
そのようなn角形は正n角形である
0885132人目の素数さん垢版2018/02/01(木) 04:36:04.06ID:YQK7w38I
>>884
なるほど
イェンゼンの不等式を使う解法を想定してたけどこんなにシンプルに解けるのか
0887132人目の素数さん垢版2018/02/01(木) 05:20:20.13ID:YQK7w38I
>>886
n角形の中心角をθ_1,...,θ_nとすれば、
Σ(i=1,n)θ_i=2πで、
0≦x≦πのとき、f(x)=sinxは上に凸
したがってイェンゼンの不等式から
n角形の面積=(1/2)Σ(i=1,n)sin(θ_i)
=(n/2)*(1/n)Σ(i=1,n)sin(θ_i)
≦(n/2)sin((1/n)Σ(i=1,n)θ_i)
=(n/2)sin(2π/n)

で等号成立はθ_1=...=θ_nのとき

みたいなのを想定してました
0888132人目の素数さん垢版2018/02/01(木) 10:30:28.47ID:ozAVSfgN
>>887
その方法もありかな
ただθiの取りうる範囲が0<θi<2πで、sinθiが上に凸でない区間を含むのでイェンゼンの不等式を使う前にもうひと工夫要る
0889132人目の素数さん垢版2018/02/01(木) 10:52:13.85ID:4D0Z8f3F
>>888
中心角がθ_i>πとすると辺が反対側になるからθ_i<πとしても問題無いと思う
0890132人目の素数さん垢版2018/02/03(土) 06:00:26.28ID:ZbURmVBy
>>884
この方法で言えることは、

「正n角形でないn角形は面積最大になり得ない」

ということに過ぎなくて、正n角形が面積最大なのかは、この方法からは分からない。
つまり、正n角形が他のn角形と比較して必ず大きくなっているのかは、
この方法からは分からない。

ただし、面積最大の多角形が「存在する」ことが別途証明してあるなら、
この方法と合わせることで、正n角形が面積最大だと分かる。
0891132人目の素数さん垢版2018/02/03(土) 08:00:05.58ID:SRNC+iev
>>890
円周の1点P0と、点P0と中心角2πk/nをなす円周上の点Pk(1≦k<n)を順に結んでできるn角形は円に内接する正n角形となる(存在性)
円に内接するn角形で、正n角形より面積の大きいものが存在すると仮定する。そのようなn角形は>>884の主張により正n角形でなければならない
円に内接するn角形は、円の中心から頂点までの距離が円の半径に等しい
円の中心と内接正n角形の各辺の両端を頂点とする三角形は中心角2π/nとそれを挟む辺が等しいため互いに合同である
この三角形の面積をS1とすると、同一の円に内接する正n角形はいずれも等しい面積nS1をもつこととなる。この性質は元の正n角形についても成立する
同一円に内接する正n角形の面積が互いに等しい事実は元の仮定と矛盾する(背理法)
円に内接する正n角形は存在し、正n角形より面積の大きいn角形は存在しない。よって正n角形は条件を満たす最大のn角形である
0892132人目の素数さん垢版2018/02/03(土) 09:12:03.68ID:ZbURmVBy
>>891
間違っている。

(1) 円に内接するn角形で、正n角形より面積の大きいものが存在すると仮定する。
(2) そのようなn角形は>>884の主張により正n角形でなければならない

この2行について、(1)から(2)への推論の仕方が間違っている。
(1)では、正n角形より面積の大きいn角形(面積最大とは限らないn角形)を
仮定しているだけなので、そのn角形に対しては >>884 は適用できない。
>>884 を使って(2)を推論するためには、もともとの(1)を

(1)' 円に内接する面積最大のn角形は正n角形でないと仮定する。

としなければならない。しかし、これでは面積が最大のn角形の「存在性」を
最初に仮定してしまっているので意味が無い。
0893132人目の素数さん垢版2018/02/03(土) 09:18:00.24ID:ZbURmVBy
面積最大のn角形が「存在する」ことを証明するには、たとえば >>887 を拝借して、

A = { (θ_1,...,θ_n)|θ_i≧0, Σ(i=1,n)θ_i=2π }

S:A → R

S(θ_1,...,θ_n) = (1/2)Σ(i=1,n)sin(θ_i)

として関数 S を定義すればよい。このとき、S は A 上の連続関数であり、
かつ A はコンパクトなので、S は最大値を持つことが分かる。
すなわち、面積最大のn角形は「存在する」ことが分かる。

……というように、面積最大のn角形の「存在性」を言うには、
それなりの抽象論が必要になって、なかなか初等的にはいかない。

初等的に済むのは、>>887 のように、ある種の不等式を使って、
直接的に「正n角形が面積最大」を示すことである。

そういう方法ではない、>>884 のような方針を使う場合には、
面積最大のn角形の「存在性」を示す必要があって、
そうすると上記のように それなりの抽象論が必要になる。
0894132人目の素数さん垢版2018/02/03(土) 09:27:16.78ID:SRNC+iev
>>892
>としなければならない。しかし、これでは面積が最大のn角形の「存在性」を
>最初に仮定してしまっている

していませんよ
0895132人目の素数さん垢版2018/02/03(土) 09:31:23.85ID:ZbURmVBy
>>894
もともとの(1)では仮定していないが、その(1)では(2)が推論できずに失敗するので、
(2)を推論したければ (1)' に修正しなければならない。しかし、(1)' では
面積が最大のn角形の「存在性」を仮定してしまっているので、これでは意味が無い。

結局、>>891のやり方はいずれにしても失敗する、ということ。
0896132人目の素数さん垢版2018/02/03(土) 09:45:17.33ID:SRNC+iev
それじゃ>>884を引用せずにやりますかの

円周の1点P0と、点P0と中心角2πk/nをなす円周上の点Pk(1≦k<n)を順に結んでできるn角形は円に内接する正n角形となる(存在性)
円に内接するn角形で、正n角形より面積の大きいものが存在すると仮定する。そのようなn角形は辺ごとに中心角が異なっていてはならないため正n角形でなければならない
円に内接するn角形は、円の中心から頂点までの距離が円の半径に等しい
円の中心と内接正n角形の各辺の両端を頂点とする三角形は中心角2π/nとそれを挟む辺が等しいため互いに合同である
この三角形の面積をS1とすると、同一の円に内接する正n角形はいずれも等しい面積nS1をもつこととなる。この性質は元の正n角形についても成立する
同一円に内接する正n角形の面積が互いに等しい事実は元の仮定と矛盾する(背理法)
円に内接する正n角形は存在し、正n角形より面積の大きいn角形は存在しない。よって正n角形は条件を満たす最大のn角形である
0897132人目の素数さん垢版2018/02/03(土) 09:49:46.47ID:ZbURmVBy
>>896
(1) 円に内接するn角形で、正n角形より面積の大きいものが存在すると仮定する。
(2) そのようなn角形は辺ごとに中心角が異なっていてはならないため正n角形でなければならない

(1)から(2)への推論が間違っている。(1)に>>884と同じことをしても、(2)は出て来ない。
0898132人目の素数さん垢版2018/02/03(土) 09:51:36.31ID:qEUwhi6H
>円に内接するn角形で、正n角形より面積の大きいものが存在すると仮定する。そのようなn角形は辺ごとに中心角が異なっていてはならないため
そうはならないね。中心角が異なるn角形よりさらに大きなn角形が存在することしかいえない
0900132人目の素数さん垢版2018/02/03(土) 10:21:37.36ID:NEmce2OD
>>893
n角形の面積が頂点の位置の連続関数かつ有界
ってことが言えれば>>884のやり方でも良いの?
0901132人目の素数さん垢版2018/02/03(土) 10:33:56.24ID:ZbURmVBy
>>900
面積最大のn角形が「存在する」ことが別途証明できているなら、>>884のやり方でよい。
で、面積最大のn角形が「存在する」ことの証明法の1つが>>893


> n角形の面積が頂点の位置の連続関数かつ有界

「連続かつ有界な関数」は最大値を持つとは限らないので、その条件ではダメ。
「コンパクト集合上の連続関数」は最大値を持つので、チェックすべきはこっち。
>>893 の設定だと、A はコンパクトで S:A → R は連続なので、S は最大値を持ち、
よって面積最大のn角形が存在することになる。
0902865垢版2018/02/03(土) 13:22:15.84ID:bx+/cqz+
>>874
リッツの変分原理を回りくどく出題したんだよね…
0903132人目の素数さん垢版2018/02/03(土) 20:34:33.26ID:vz2cYDpM
>>875の答え
新しい三角形の3つの角は
∠ADB-60°
∠BDC-60°
∠CDA-60°
元の正三角形を2つくっつけると容易に導ける
https://youtu.be/dF67AJH9mjM
0905132人目の素数さん垢版2018/02/05(月) 04:29:09.80ID:tjkCYLNc
>>888-889
 θ_i > πの辺があるとき

・n=3 のとき
 その辺の長さ <2,高さ <1 面積 <1
 一方、正△の面積は(3/2)sin(2π/3)=(3√3)/4 > 1

・n≧4 のとき
 n角形は半円の内部に収まるから、面積 < π/2
 一方、正n角形の面積は(n/2)sin(2π/n)≧ 2  (←(sinθ)/θ ≧ 2/π)

いずれの場合も面積最大ではない。

>>903

△ABCを頂点Aのまわりに60°回す。
 B→C,C→E,D→F

△ADFは正△
0907132人目の素数さん垢版2018/02/06(火) 06:10:07.43ID:7rgGAmy4
自然数nの各位の数字の和をS(n)とおくとき、S(n^2) = S(n)-7をみたすnの最小値を求めよ。
0908132人目の素数さん垢版2018/02/06(火) 16:49:32.36ID:Yc2MOlIU
番外編第2問 完全なるネタ問です。暇な時にでもどうぞ。

[2'](オリジナル)

x,yを自然数とする。

 x^2 - y^2 =(x+y)(x-y)
 
  を、「xy」を出現させずに示せ。

>>906
 12371 ≡ -22 (mod 243)
 (-22)^56 ≡ -83 (mod 243)
 (-83+34)^28 ≡ (-49)^28 ≡ 130 (mod 243)

(twitter.com/perfectly08641086/)
0910132人目の素数さん垢版2018/02/06(火) 17:24:47.10ID:tIuHS797
>>908
x=(x+y)-y
0911132人目の素数さん垢版2018/02/06(火) 22:22:11.96ID:5Qv839bR
>>879
遅くなったが○(必要性(AB上の点だけである)を言ってないが)


2交点を通る直線の、円の外部にある部分(1行解答)
0912132人目の素数さん垢版2018/02/07(水) 05:11:06.72ID:hJs29j8F
[5]
n,k を自然数とする。
次の条件を満たす k の値をすべて求めよ。
「n,n+k がともに平方数となるような n がただ一つに定まる。」

(日本ジュニア数学オリンピック2014年、予選 第6問 他 アレンジ)
http://twitter.com/perfect08641086/
0913132人目の素数さん垢版2018/02/07(水) 07:11:10.59ID:N1eeF5xg
>>912
以下、自然数とは正整数のこととする。
n=NN,n+k=MMである自然数N,Mが存在する場合、k=(n+k)-n=MM-NN=(M+N)(M-N)となる
よって、kに対してkがM+NとM-Nの積となるような自然数の組(M,N)が1通りに定まる場合を求める
M+NとM-Nはともに異なる奇数であるか、ともに異なる偶数である
1)M+NとM-Nがともに異なる奇数である場合
kは奇数である。
kが3以上の異なる奇数K,L(K>L>1)の積KLである場合、
(M,N)=((KL+1)/2,(KL-1)/2),((K+L)/2,(K-L)/2)の少なくとも2通りの解がある
k=1の場合、M+N=M-N=1のため題意を満たさない
これらを除くとkが奇素数または奇素数の平方である場合のみ、単一解(M,N)=((k+1)/2,(k-1)/2)をもつ
2)M+NとM-Nがともに異なる偶数である場合
kは4の倍数である。
kが4以上の異なる偶数2K,2L(K>L>1)の積4KLである場合、
(M,N)=(KL+1,KL-1),(K+L,K-L)の少なくとも2通りの解がある
k=4の場合、M+N=M-N=2のため題意を満たさない
これらを除くとk/4が素数または素数の平方である場合のみ、単一解(M,N)=(k/4+1,k/4-1)をもつ
上記より、kは奇素数、奇素数の平方、素数の4倍、素数の平方の4倍のいずれかである。
0914268垢版2018/02/07(水) 09:46:09.13ID:ToZYT75j
>>268の解答

(1)
k=(aa+a+1)/(a+8)=a-7+57/(a+8)
57/(a+8)が整数になる自然数aはa=11,49

(2)
kが自然数ならば2kも自然数
2k=2(2aa+a+2)/(4a+9)=a-1+(-3a+13)/(4a+9)
a≧1で-1<(-3a+13)/(4a+9)<1かつaが整数のとき(-3a+13)/(4a+9)≠0だから、
aが自然数のとき2kが自然数になることはない。
よってkが自然数になることはない。

(3)
(i) b(aab+a+b)=aabb+ab+bb≦aabb+ab+abb<aabb+ab+7a+abb+b+7=(a+1)(abb+b+7)
∴(aab+a+b)/(abb+b+7)<(a+1)/b
(ii)
(a-1)(abb+b+7)/b=aab+a+7a/b-ab-1-7/b=aab+a-a(b-7/b)-1-7/b<aab+a-1-7/b<
=aab+a+b
∴(a-1)/b<(aab+a+b)/(abb+b+7)
(iii)
(a/b-1/b)<k<(a/b+1/b)より(a-1)<bk<(a+1)
a-1,a+1,bkはいずれも整数だからbk=a
(iv)
元の式よりk=(bbbkk+bk+b)/(bbbk+b+7)
∴bbbkk+bk+7k=bbbkk+bk+b⇔b=7k

確かに(a,b)=(11,1),(49,1),(7kk,7k)のときkは自然数である。

出典:IMO1998-4
誘導は勝手につけた
0915268垢版2018/02/07(水) 09:56:38.30ID:ToZYT75j
で、本題なんだが、前スレで268を出題するつもりが、ミスにより

(a^2+a+b)/(ab^2+b+7)が自然数となるような自然数の組を求めよ

という問題文になってしまった(分子の第1項が違う)。
仕方なく解いてみたのだが、色々やってもa,bを上から抑えられずうまくいかなかった。
誰か挑戦してみてください。

====================

【途中経過】

あるbを与えられたとき、aは次のように求められる。

kを自然数として
(a^2+a+b)/((b^2)a+b+7)=k
⇔a^2+(1-(b^2)k)a+b-bk-7k=0 …★
aが自然数解を持つための必要条件は判別式が平方数だから、mを非負整数として
(1-(b^2)k)^2-4(b-bk-7k)=m^2
⇔…
⇔((b^4)k-b^2+2b+14+m)((b^4)k-b^2+2b+14-m)=4(b^5-b^3-6b^2+14b+49)

例えばb=1のとき、右辺は228
素因数分解して左辺の候補を絞ると(k,m)=(7,16),(43,56)
★にkを代入すると
k=7のときa=11,-5
k=43のときa=49,-7
よって(a,b)=(11,1),(49,1)を得る。
これらは確かに与式を満たす。

この方法でb=10まで確認したところ、(a,b)=(11,1),(49,1),(17,2),(27,3)を得た。
0916132人目の素数さん垢版2018/02/07(水) 11:24:10.23ID:RLIi/erX
>>915
(1-(b^2)k)^2-4(b-bk-7k)=m^2
⇔…
⇔((b^4)k-b^2+2b+14+m)((b^4)k-b^2+2b+14-m)=4(b^5-b^3-6b^2+14b+49)
のところがわからない
(1-(b^2)k)^2-4(b-bk-7k)≡((b^4)k-b^2+2b+14)^2-4(b^5-b^3-6b^2+14b+49)
と言ってるように見えるけどそうなの?
0917268垢版2018/02/07(水) 11:32:06.68ID:/xZxX6e1
展開してみると一致するのがわかる
0918268垢版2018/02/07(水) 11:53:29.64ID:/xZxX6e1
いや
最初に両辺にb^4かけてM=(b^2)mで置き換えてた
すまんな

(b^4)((1-(b^2)k)^2-4(b-bk-7k))=M^2=((b^4)k-b^2+2b+14)^2-4(b^5-b^3-6b^2+14b+49)
0919132人目の素数さん垢版2018/02/07(水) 14:31:49.31ID:RLIi/erX
>>918
わかりました
(1-(b^2)k)^2-4(b-bk-7k)=m^2 を k の2次方程式と見たときの判別式が
4(b^5-b^3-6b^2+14b+49)+((b^2)m)^2
ですが、これが平方数であって、
((b^4)k-b^2+2b+14)^2に等しいという言い方もできるわけですね
0920132人目の素数さん垢版2018/02/07(水) 16:18:34.01ID:RLIi/erX
>>915
a,bを自然数として、k=f(a,b)=(a^2+a+b)/(ab^2+b+7)とする
1) bが一定のとき、a≧bの範囲でf(a,b)はaについて単調増加であることを示せ
2) b≧4、n≧1のとき、f(nb^2-1,b)<nを示せ
3) b≧4、n≧1のとき、f(nb^2,b)>nを示せ
4) a≧1、b≧4の自然数について、f(a,b)は自然数とならないことを示せ

こんな感じですかね
0922132人目の素数さん垢版2018/02/08(木) 10:16:48.21ID:FamPdXrc
球面上でランダムに選んだ4点からなる四面体が球面の中心を含む確率を求めよ。
厳密でなくてよい。エレガントな解答がある。
0923132人目の素数さん垢版2018/02/08(木) 10:35:32.87ID:KjVcfdlC
なんとなく15/16?
0924132人目の素数さん垢版2018/02/08(木) 11:19:12.25ID:DJohvmqw
>>922
1/8かな
四面体のどの2頂点を選んでも、その2頂点を通る大円で分けられたそれぞれの半球面に残りの2頂点が1つずつ含まれることが、四面体が中心を含むための必要充分条件となる
3つの頂点をランダムに選んだとき、4つ目の頂点はそれら3つの頂点から2つを選んでできる3通りの大円について、1/2の確率で頂点のない半球に置かれる
点の選び方がランダムなので、大円の取り方は互いに独立と考えてよく、結果、四面体が円の中心を含む確率は(1/2)^3=1/8となる
0926132人目の素数さん垢版2018/02/08(木) 12:03:21.48ID:kp9W/haN
当然球面上の一様分布で考えようから
ならんよ
0927132人目の素数さん垢版2018/02/08(木) 16:31:09.97ID:O4Qrpcje
>>924
>> 四面体のどの2頂点を選んでも、その2頂点を通る大円で分けられたそれぞれの半球面に残りの2頂点が
>> 1つずつ含まれることが、四面体が中心を含むための必要充分条件となる

必要条件だけど、十分条件ではないよ
0929132人目の素数さん垢版2018/02/08(木) 21:47:07.53ID:oi+h1F3T
>>924
1/8正解
前半の必要十分条件については、特に反例は思い付かない

3本の直径と1個の点Pをランダムに選ぶ
それぞれの直径の端点を1つずつ選ぶ方法は2^3=8通りあるが、出来上がった四面体が球面の中心を含むのは1つのみ(選ばれなかった端点からなる球面三角形上にPがあるとき)
よって1/8

パトナム競争の問題
https://mks.mff.cuni.cz/kalva/putnam/psoln/psol926.html
この動画でも解説されている(円と三角形の場合から始めている)
https://youtu.be/OkmNXy7er84
0930132人目の素数さん垢版2018/02/09(金) 07:37:01.95ID:17ymJrhU
互いに素なa、b∈Zと、任意のn∈Zに対して、ax+bとnが互いに素であるようなx∈Zが存在することを示せ。
0932132人目の素数さん垢版2018/02/09(金) 23:13:52.78ID:17ymJrhU
オイラーのφ関数について、gcd(a,b) = d >1 ならば、φ(ab)φ(g) = φ(a)φ(b)・d を示せ。
0933132人目の素数さん垢版2018/02/10(土) 00:37:34.68ID:JLwIa9Z8
>>932
gcd(a,b)= d > 1 というが、a,bの一方だけを割り切るような素数がある場合は除く必要がある
0935132人目の素数さん垢版2018/02/10(土) 07:33:02.12ID:MY7c6GmE
>>932
g=dと考えていい?
正整数a,bについてgcd(a,b)=dのときφ(ab)φ(d)=φ(a)φ(b)・dを示す。
正整数nについて、その素因数を{Pm}とするとき、φ(n)=n・Π{Pm}(1-1/Pm)
bと素である最大のaの約数をa1とする。
aと素である最大のbの約数をb1とする。
a1の素因数を{Ax}、b1の素因数を{By}、dの素因数を{Dz}とすると、
aの素因数は{Ax}∪{Dz}、bの素因数は{By}∪{Dz}である。
a1,b1はそれぞれdと素である。つまり、{Ax}∩{Dz},{By}∩{Dz}はいずれも要素を持たない。
a1とb1は素である。つまり、{Ax}∩{By}は要素を持たない。
a2=a/a1、b2=b/b1となる整数a2,b2があり、それぞれはdの倍数であるから、
a3=a2/d、b3=b2/dとなる整数a3,b3がある。
a=a1・a3・d、b=b1・b3・dとなる。
以上のことから、n=d,a,b,abについてφ(n)は以下となる。
φ(d)=dΠ{Dz}(1-1/Dz)
φ(a)=φ(a1・a3・d)=a1・a3・d・Π{Ax}(1-1/Ax)Π{Dz}(1-1/Dz)=a1・a3・φ(d)・Π{Ax}(1-1/Ax)
φ(b)=φ(b1・b3・d)=b1・b3・d・Π{By}(1-1/By)Π{Dz}(1-1/Dz)=b1・b3・φ(d)・Π{By}(1-1/By)
φ(ab)=φ(a1・a3・d・b1・b3・d)=a1・a3・d・b1・b3・d・Π{Ax}(1-1/Ax)Π{By}(1-1/By)Π{Dz}(1-1/Dz)
=(φ(a)/φ(d))(φ(b)/φ(d))φ(d)・d=(φ(a)φ(b)・d)/φ(d)
よって、φ(ab)φ(d)=φ(a)φ(b)・d
0936DJ学術 垢版2018/02/10(土) 08:37:19.43ID:63PiesU1
わからんのか。フィーリングで速読してみろ。
0937132人目の素数さん垢版2018/02/10(土) 12:00:09.69ID:R1D7D1fh
lim[n→+∞] (1+(1/n))^n ≡ e (★)
lim[n→-∞] (1+(1/n))^n = e
lim[n→+0] (1+(1/n))^n = 1
lim[n→-0] (1+(1/n))^n = 1

lim[n→+∞] (1-(1/n))^n = 1/e
lim[n→-∞] (1-(1/n))^n = 1/e
lim[n→+0] (1-(1/n))^n = 1
lim[n→-0] (1-(1/n))^n = 1

lim[n→+∞] (1+n)^(1/n) =1
lim[n→+0] (1+n)^(1/n) = e
lim[n→-0] (1+n)^(1/n) = e

lim[n→-∞] (1-n)^(1/n) =1
lim[n→+0] (1-n)^(1/n) = 1/e
lim[n→-0] (1-n)^(1/n) = 1/e

★を定義として残りの式を示せ
0939132人目の素数さん垢版2018/02/10(土) 14:39:29.12ID:JLwIa9Z8
オイラーのφ関数は乗法的だから、素数pごとに分けて考えてよい。
 (ab/d)・d = a・b
より
 φ(ab/d)・φ(d) = φ(a)・φ(b)

 φ(n) = n・Π{p_m|n} (1-1/p_m) を使う。


>>937

lim [n→+∞] (1 + 1/n)^(n + 1/2) ≡ e   (☆)
の方がカコイイ
0941132人目の素数さん垢版2018/02/10(土) 15:03:18.71ID:VcDtRhPJ
>>940
>φ(3)=1
0944132人目の素数さん垢版2018/02/10(土) 15:28:50.93ID:VcDtRhPJ
>>942
数論的関数の乗法性の定義を知らないのか
0945132人目の素数さん垢版2018/02/10(土) 19:13:51.53ID:p8fUG64o
>>942
実に実に実に実に実にぃ〜怠惰デスネ! 一から、いえゼロから勉強し直してくるのです!
0946132人目の素数さん垢版2018/02/11(日) 01:47:44.56ID:jr8eNYeJ
思いついた問題はあるんだけど
出題するタイミングが分かんないんだよね

ここ2,3日に出た問題にレスが付かなそうだったら投下する
0947132人目の素数さん垢版2018/02/11(日) 01:58:52.82ID:oyQM1khy
>>932
d|(ab/d)
つまり、ab/d は d の素因数をすべて含んでいる。
φ(ab/d)= φ(ab)/d,
>>939 にこれを使えば出るらしいよ。
0948132人目の素数さん垢版2018/02/11(日) 12:51:57.50ID:zE0RtHGg
暇なときにでもどうぞ

例えば8だと転置しても基本変形後の行列が変わらない事、及びσが置換全体を走る時σ^(-1)が置換全体を走る事使えば良いんですかね?
13は固有値使うと早いのかな?
17は基本変形を施す行列が正則であることから示せるね
...のような感じで答えてくださって構わないです


https://i.imgur.com/mMPwhK0.jpg
0951132人目の素数さん垢版2018/02/11(日) 14:48:26.10ID:lsbQUPFq
>>932
φ(a)=a(1-1/p1)...(1-1/pi)(1-1/q1)...(1-1/qj)
φ(b)=b(1-1/p1)...(1-1/pi)(1-1/r1)...(1-1/rk)
φ(d)=d(1-1/p1)...(1-1/pi)
φ(ab)=ab(1-1/p1)...(1-1/pi)(1-1/q1)...(1-1/qj)(1-1/r1)...(1-1/rk)
φ(ab)φ(d)/φ(a)φ(b)=d
レス数が950を超えています。1000を超えると書き込みができなくなります。

ニューススポーツなんでも実況