>>694
1+t>1よりlog(1+t)>0だからlog(log(1+t))と出来るのを利用する。

f(s)=log((t^s)/s)-log(log(1+t))=slogt-logs-log(log(1+t))とおく。
これをsで微分すると
f'(s)=logt-1/s.

i) 0<t<eでlogt<1のとき
0<s≦1の範囲でf'(s)<0でありf(s)はs=1で最小値をとる。
f(1)
=1logt-log1-log(log(1+t))
=logt-log(log(1+t))
=log(t/log(1+t)).

ii) t≧eでlogt≧1のとき
0<s≦1の範囲でf(s)はs=1/logtで極小値をとる。
f(1/logt)
=(1/logt)(logt)-log(1/logt)-log(log(1+t))
=1+log(logt)-log(log(1+t))
=1+log((logt)/log(1+t)).

いずれも0より大きいことは簡単に示せるんじゃないか?

よって、t>0のとき、0<s≦1の範囲でf(s)>0.
したがって、t>0, 0<s≦1のとき
log((t^s)/s)-log(log(1+t))>0
⇔log(log(1+t))<log((t^s)/s)
⇔log(1+t)<(t^s)/s. ■