無限に大きくなるコラッツ列が存在すると仮定する。
このときの割数列は無限に長いものとなる。
これは、<定理1>に無限に適用でき、無限に逆適用できる。
変換Gであらわされる割数列は同一視して、
図であらわすと、上にも下にも無限に長い二分木(二分木A)となる。
<補題2>より、割数列の項は繰り返しにならないから、二分木の要素はそれぞれ異なるものとなる。
また、有限の長さの割数列では、[6]を根とする下に無限に長い二分木(二分木B)となる。

この二つを比べると、二分木Aのほうが個数が多い。
対応する点を子から親へ変えても、さらに親が存在するから、とりつくせない部分が存在し、
二つの集合は一対一対応がつかない。
二分木Bは可算集合だから、二分木Aは非可算集合である。

<補題3>より、すべての3の倍数の奇数は、<定理1>変換後の割数列であらわされるが、
すべての3の倍数の奇数は可算集合だから、二分木Aと対応がつかないので矛盾する。
よって、無限に大きくなるコラッツ列は存在しない。