X



トップページ数学
242コメント159KB
πって本当に無理数なの?
■ このスレッドは過去ログ倉庫に格納されています
0165132人目の素数さん垢版2018/11/23(金) 00:44:50.19ID:eRIDJVQi
>>162

π は {(x+1)/8}^4 -4{(x+1)/8}^2 +1 = 0 の根だから代数的数ですよん

π = 4(√6 -√2) -1 = 3.1411047


π は {(5x-13)/8}^4 -70{(5x-13)/8}^2 -192{(5x-13)/8} +73 = 0 の根だから代数的数ですよん

π = {13 +8(2√6 -2√2 -√3)}/5 = 3.1416025
0167132人目の素数さん垢版2018/11/24(土) 12:00:21.93ID:OpCiwKZy
>>162 >>164

x^4 -10x^2 +1 = 0
 π = √2 + √3 = 3.146264

x^6 -10x^4 +x^2 +3 = 0
 π = 3.141314

x^8 -10x^6 +x^4 +3x^2 -2 = 0
 π = 3.141650

x^10 -10x^8 +x^6 +3x^4 -2x^2 +7/2 = 0
 π = 3.1415907
0171132人目の素数さん垢版2018/12/05(水) 06:45:28.53ID:fLK6/i8S
π = (10 - 3/23)^{1/2} = 3.1415864
π = (31 + 1/155)^{1/3} = 3.1415985
π = (97 + 9/22)^{1/4} = 3.14159265
π = (306 + 1/51)^{1/5} = 3.14159250
0173132人目の素数さん垢版2018/12/06(木) 03:42:41.70ID:9xq/7gl/
P = ln(640320^3 + 744)/√163
はπと30桁一致するが、πとは異なる超越数である。

[x] はxを超えない整数とすると
N = Σ(n=1,∞) [ n・e^{(π√163)/3} ] / 5^n
は 10^9 桁以上の精度で整数200100と一致するが、整数ではない。


M >>1 とすると、
Q = ln(10)・((1/M)Σ(n=-∞,∞) 10^{-(n/M)^2})^2
はπと (πM/ln(10))^2 桁一致するが、πとは異なる。

「円周率について語り合おう【π】」- 017
0174132人目の素数さん垢版2018/12/07(金) 02:50:27.65ID:tc+suZZS
>>162

πは x^5 - 97x - 9/7 = 0 の根だから代数的数ですよ?
π = 3.1415940

>>171

π = (97 + 9/22)^{1/4} = 3.1415926525
は大昔に S.Ramanujan が発見してます。

他にも色々あります。
π= (63/25)[1 + 10/(7+15√5)] = 3.1415926538
π = (99^2)/(2206√2) = 3.141592730
0178132人目の素数さん垢版2019/01/14(月) 04:53:25.54ID:VbLIcfRT
祖沖之が錬金術師だったら

約率 (Ti)/(N)
蜜率 355/(Nh)

と言ったかも。
なお、355番元素は未発見。
0179132人目の素数さん垢版2019/01/15(火) 00:10:43.29ID:uJxU5NAt
>>98
フーリエ級数展開
 π-θ = 2Σ[n=1,∞] sin(nθ)/n  (0<θ<2π)
θ = π/2 とおくと
 π/2 = 2Σ[n=1,∞] sin(nπ/2)/n = 2Σ[m=1,∞] (-1)^(m-1) /(2m-1),
0180132人目の素数さん垢版2019/04/29(月) 01:37:10.72ID:3qGFFixv
πは中間子です。

 種 類     中間子(ゲージボゾン)
           π±         π°
 ---------------------------------------------------------------
 電 荷       ±e           0
 クォーク組成  π+ = ud~, π- = u~d,  π°= (uu~-dd~)/√2,
 質 量     139.5700×10^6 [eV]   134.9764×10^6 [eV]
 寿 命     2.603×10^(-8) [s]    8.4×10^(-17) [s]
 スピン       0             0       (スカラー ボゾン)
 アイソスピン    1             1
0181132人目の素数さん垢版2019/05/09(木) 02:41:51.87ID:7Q6cd3gq
πは(芳香族)有機化合物中の電子軌道です。

・C-2p軌道(2p_z)が重なって生じる。

・原子同士の場合、σ結合の60%ぐらいしか安定化しない。(エチレン)
  ∵ 電子雲が平行なのでσ結合よりも重なりSが小さい。

・Cの数が多いときは平面状に広がって非局在化する。このため(超高圧でない場合)エネルギー的に有利。
  例:グラフェン、グラファイト

・面対称性により、σ軌道や内殻軌道と直交している。
 クーロン積分・交換積分など低次の積分は0である。
 このため孤立性が強く、π電子だけを考慮する近似が可能。(ヒュッケル近似)
0182132人目の素数さん垢版2019/05/16(木) 04:10:00.34ID:ZVSQZSvn
まとめ
 22/7 = π + 1.264489E-3  (バビロニア)
 223/71 = π - 7.47583E-4  (アルキメデス)
 377/120 = π + 7.401308E-5  (プトレマイオス)
 355/113 = π - 2.667642E-7  (祖沖之)

103993/33102 = π - 5.77891E-10
104348/33215 = π + 3.31628E-10

103993/33102 (1個) と 104348/33215 (2個) の「平均」
 312689/99532 = π + 2.91434E-11

103993/33102 (3個) と 104348/33215 (5個) の「平均」
 833719/265381 = π - 8.715467E-12

103993/33102 (4個) と 104348/33215 (7個) の「平均」
 1146408/364913 = π - 1.61074E-12

・連分数表示
 3 + 1・1/{6 + 3・3/[6 + 5・5/(6 + 7・7/(6 + ・・・・))]}

>>15
 グレゴリー・ライプニッツ級数 4arctan(1) は収束が遅い。
0183132人目の素数さん垢版2019/05/18(土) 08:02:41.74ID:SPl7kJbB
〔問題〕
 10 - 7/48 < 6ζ(2) < (√2 + √3)^2 を示せ。

ただし ζ(2) = 1 + 1/4 + 1/9 + ・・・・ = Σ[k=1,∞] 1/kk である。


〔系〕
 3.139134 < √{6ζ(2)} < √2 + √3 = 3.146264
0184132人目の素数さん垢版2019/05/18(土) 08:04:21.99ID:SPl7kJbB

ζ(2) = 1 + 1/4 + 1/9 + Σ[k=4,∞] 1/kk
 < 49/36 + Σ[k=4,∞] 1/(kk-1/4)
 = 49/36 + Σ[k=4,∞] {1/(k-1/2) - 1/(k+1/2)}
 = 5/6 + 19/36 + 2/7
 = (5 + 205/42) /6,

∴ 6ζ(2) < 5 + 205/42 < 5 + 44/9 < 5 + 2√6 = (√2 + √3)^2,

 6 - (22/9)^2 = 2/81 > 0 より √6 > 22/9,


ζ(2) = Σ[k=1,∞] 1/kk
 = 2 - Σ[k=1,∞] {2/(2k-1) -2/(2k+1) -1/kk}
 = 2 - Σ[k=1,∞] {4/(4kk-1) - 1/kk}
 = 2 - Σ[k=1,∞] 1/{(4kk-1)kk}
 = 2 - 1/3 - 1/60 - 1/315 - Σ[k=4,∞] 1/{(4kk-1)kk}
 > 2 - 89/252 - (1/63)Σ[k=4,∞] 1/kk
 = 2 - 89/252 - (1/63){ζ(2) - 49/36},

∴ 6ζ(2) > 10 - 7/48 = 9.854167
0185132人目の素数さん垢版2019/06/24(月) 07:51:20.62ID:5RST14eI
>>183 >>184
バーゼル問題

藤田岳彦: 数学セミナー, 51(3), p.30-36 (2012/Mar)
 「リーマン・ゼータ関数の特殊値を確率論で求める」
0186132人目の素数さん垢版2019/08/24(土) 05:19:46.39ID:tClIWhSz
>>171 >>174 より

π^4 = 97 + 9/22
  = 100 - 3(19/22)
  = 100 - 3(20/23) + 9/(22・23)
  > 100 - 20(3/23) + (3/23)^2
  = (10 - 3/23)^2,

π^2 ≒ 10 - 3/23 = 9.869565
0187132人目の素数さん垢版2019/09/28(土) 08:22:29.57ID:Edjp1ZNI
大阪大学が2003年の問題でπは無理数であることの証明問題だしてっから。

高校数学レベルのお話ですよ。
0188@垢版2019/10/09(水) 22:24:54.89ID:nOSrzidT
平均」
 833719/265381 = π - 8.715467E-12

103993/33102 (4個) と 104348/33215 (7個) の「平均」
 1146408/364913 = π - 1.61074E-12

・連分数表示
 3 + 1・1/{6 + 3・3/[6 + 5・5/(6 + 7・7/(6 + ・・・・))]}
0189132人目の素数さん垢版2020/03/14(土) 15:12:25.64ID:iH59lf4s
2020/03/14 15:09:26.5359

(公財)日本数学検定協会(数検)が「数学の日」制定(1997)

日本パイ協会 の「パイの日」
http://www7a.biglobe.ne.jp/~pienohi/index.htm

A.アインシュタイン (1879/03/14〜1955/04/18)
0190132人目の素数さん垢版2020/04/17(金) 07:39:11.04ID:9hIlQifL
>>174
下の近似式はモジュラー関数による公式
 1/π = {(2√2)/(99^2)}Σ[n=0,∞] (4n)!(1103+26390n)/{(4・99)^n・n!}^4
の初項から。
0191132人目の素数さん垢版2020/04/23(木) 21:13:07.06ID:Oad7PNE0
ニーベンの証明。大阪大学では2003年後期の数学で出題されている。
0192132人目の素数さん垢版2020/05/08(金) 09:59:19.07ID:CiWhnomZ
円を4等分して分離して平行四辺形の形みたいに合体させる。これを永久に繰り返して小さくしていっても弧の部分が永久にできるから絶対に無理数だろ
0193132人目の素数さん垢版2020/05/08(金) 10:02:12.84ID:CiWhnomZ
>>185
π自乗/6
0194132人目の素数さん垢版2020/05/08(金) 10:27:58.52ID:WmDpVhCu
3月の宿題で(1)のみ正解の数弱@shukudai_sujaku

昨年度の大学への数学(大数)での勝率は、

学コンBコースが 1/1 = 100% ,

宿題が 3/10 = 30% でした!

宿題の勝率が低すぎると思うので、

これからは一層精進していきたいです!

https://twitter.com/shukudai_sujaku
https://twitter.com/5chan_nel (5ch newer account)
0195132人目の素数さん垢版2020/06/28(日) 12:53:51.93ID:DrzpFm0+
>>104
 m→∞ のとき a_n (n>m)の存在する区間の幅が0に近づくような数列 {a_n} を考える。
 (基本列 とか コーシー列 とか云うらしい。)
 カントールはその極限をもって実数の定義とした。

(例)a_n により小数点下n桁まで決定する場合。
0196132人目の素数さん垢版2020/06/28(日) 13:10:53.98ID:DrzpFm0+
>>103
√(π/1.2) = 1.6180216 を利用して「Pibonacci数」を定義する。
 P_1 = P_2 = 1,
 P_{n+1} = {√(π/1.2) - √(1.2/π)}P_n + P_{n-1}
     = 0.9999828706P_n + P_{n-1},

これに対する「ビネの公式」は
 P_n = {(π/1.2)^(n/2) - (-1)^n・(1.2/π)^(n/2)}/{√(π/1.2) + √(1.2/π)}
   = {(π/1.2)^(n/2) - (-1)^n・(1.2/π)^(n/2)}/2.236060317

・富士山麓オウムは災難
0197132人目の素数さん垢版2020/06/28(日) 14:20:23.76ID:DrzpFm0+
訂正
「ビネの公式」は
 P_n = {(1 + 1/φ')・φ'^(n-1) - (-1)^n・(φ' - 1)・φ'^(1-n)}/(φ' + 1/φ')
   = {(φ' +1)・φ'^(n-2) - (-1)^n・(1 - 1/φ')・φ'^(2-n)}/(φ' + 1/φ')

 φ' = √(π/1.2) = 1.618021594
ですた。
・富士山麓オウムはサイナラ
0198132人目の素数さん垢版2020/06/29(月) 10:00:55.70ID:4ejNywyM
>>104
[定理12] 実数αに収束する有理数列が存在する。

高木:「解析概論」改訂第三版、岩波書店 (1961)
 附録I.無理数論、§6.極限、定理12、p.462-463
0201132人目の素数さん垢版2020/09/01(火) 19:26:43.14ID:2qjbTlF5
2645
学コン・宿題ボイコット実行委員会@gakkon_boycott 9月1日
#拡散希望
#みんなで学コン・宿題をボイコットしよう
雑誌「大学への数学」の誌上で毎月開催されている学力コンテスト(学コン)と宿題は、添削が雑で採点ミスが多く、訂正をお願いしても応じてもらえない悪質なコンテストです。(私も7月号の宿題でその被害に遭いました。)このようなコンテストに参加するのは時間と努力の無駄であり、参加する価値はありません。そこで私は、これ以上の被害者を出さないようにするため、また、出版社に反省と改善を促すために、学コン・宿題のボイコットを呼び掛けることにしました。少しでも多くの方がこの活動にご賛同頂き、このツイートを拡散して頂ければ幸いです。
https://twitter.com/gakkon_boycott/status/1300459618326388737
https://twitter.com/5chan_nel (5ch newer account)
0203132人目の素数さん垢版2020/09/13(日) 20:19:04.99ID:aLRApFcX
(π/2 - 1)^8 + (4/3)^8 = 10
より
π = 2(1 + [10 - (4/3)^8]^{1/8}),
たしかに無理数。(8次の代数的数?)
0204132人目の素数さん垢版2020/10/08(木) 19:35:15.76ID:8qMJ5k1Q
 π = 3 + 0.1√2 = √(9 +0.6√2 +0.02),
とおく。
次に「ペル方程式」の解を使って、√2 を分数で近似する。
7^2 - 2・5^2 = -1 より
 √2 ≒ 7/5,
 p = 3 + 0.1√2 ≒ 3 + 7/50 = 3.14

10^2 - 2・7^2 = 2 より
 √2 ≒ 10/7,
 q = 3 + 0.1√2 ≒ 3 + 1/7 = 3.142857

{p,p,p,p, q,q,q,q,q} の相加平均、調和平均より
 π' = (4p+5q)/9 = 3 + 223/1575 = 3.1415873
 π" = 9/(4/p + 5/q) = 3 + 1401/9895 = 3.14158666

17^2 - 2・12^2 = 1 より
 √2 ≒ 17/12,
 π = 3 + 0.1√2 ≒ 3 + 17/120 = 3.1416667
 π = √(9 +0.6√2 +0.02)
  ≒ √(9 +0.85 +0.02) = √(9.87) = 3.1416556
0205132人目の素数さん垢版2020/10/09(金) 03:29:56.07ID:xCXYnpIX
 π^2 + (1/π)^2 = (π - 1/π)^2 + 2 ≒ 10,
 π - 1/π ≒ 2√2,
これを改良して
 π - 1/π + 1/(2π^4) = 2√2,

∴ π = 3.141603
0206132人目の素数さん垢版2020/10/09(金) 13:25:23.00ID:xCXYnpIX
 π^2 + (1/π)^2 = (π + 1/π)^2 - 2 ≒ 10,
 π + 1/π ≒ 2√3,
これを改良して
 π + 1/π + 1/((√6)π^4) = 2√3,

∴ π = 3.1416016

また
π = √3 + √2 - (√3 + √2)/(4(√3)π^3),
1/π = √3 - √2 + (√3 - √2)/(4(√3)π^5),
0207132人目の素数さん垢版2020/11/11(水) 07:53:42.04ID:rE2Lzr4n
√3 = 1 + (1/2) 1.1^4 = 1.73205
√2 = 1 + 0.8^4
π = √3 + √2 = 2 + (1/2) 1.1^4 + 0.8^4 = 3.14165
0208132人目の素数さん垢版2021/01/03(日) 09:40:57.42ID:Pxnqeb9A
個人的に…
無理数とは一生続くと考えられているが
無理数とは人間が解けないことにより勝手に
無理だと諦めた数字であるよって無理数は存在しない…(そう信じている!!)
0209132人目の素数さん垢版2021/01/11(月) 21:06:00.34ID:K30v1vz8
>>186
π^2 = (3 + 14/99)^2
 = 9 + 28/33 + 1/50
 = 10 - 5/33 + 16/(23・33)
 = 10 - 3/23
 = 9.86956522

π^2 = (3 + 14/99)^2
 = 9 + 28/33 + 1/50
 = 10 - 5/33 + 23/(33^2)
 = 9.86960514
0210132人目の素数さん垢版2021/02/09(火) 01:43:23.37ID:aNPXJPqr
>>197
φ = √(π/a) より
π = aφ^2,
π - a - √(aπ) = 0,

0 = (π-a)^2 - aπ
 = π^2 - 3aπ + aa
 = (π - 3a/2)^2 - 5aa/4,

π = aφ^2 = (3+√5)a/2 = 1.8 + √1.8
0211132人目の素数さん垢版2021/02/24(水) 08:02:40.79ID:L9PmkNI0
>>206
下から2行目
 π = (√3 + √2) {1 - 1/(4√3・π^4)},
を4乗して
 π^4 = (√3 + √2)^4 {1 - 1/(√3・π^4)},
これを解いて
 {π/(√3 + √2)}^4 = (1 + √(1 - 196/√3 + 80√2))/2 = 0.994072927
∴ π = (0.994072927)^(1/4) * (√3 + √2)
  = 0.998514926 (√3 + √2)
  = 3.14159194

最後の行は
1/π = (√3 - √2) {1 + 1/(4√3・π^4)},
0212132人目の素数さん垢版2021/02/24(水) 11:48:50.18ID:L9PmkNI0
a = 0.00727079154 に対して
π = √(3-a) + √(2-a) = 3.141591246

1/π = √(3-a) - √(2-a) = 0.318310029
π + 1/π = 2√(3-a) = 3.459901275
π - 1/π = 2√(2-a) = 2.823281217

(a = 1 - exp(-α),
α = 0.00729735257 は Sommerfeld の微細構造定数)
0214132人目の素数さん垢版2021/03/08(月) 00:37:35.20ID:Vhpg2AFq
 π ≒ (20/9)√2 = 3.1427
 π ≒ (64/27)(√2 - 4/45) = 3.14151
から
 π = (64/29){(77/72)√2 - 4/45} = 3.14159216
0215132人目の素数さん垢版2021/03/08(月) 02:34:48.15ID:Vhpg2AFq
>>206
p = √3 + √2 = 3.14626437
π = p - (√2) /p^5 - √(2/3) /p^8 - … = 3.14159223
0216132人目の素数さん垢版2021/03/22(月) 11:19:29.88ID:2Gk1S8LQ
(3 + √5)(√7 + √11) = 31.2194 > π^3,
(3 + √11)(√5 + √7) = 30.8366 < π^3,

π = [(3 + √5)(√5 + √7)(√7 + √11)(√11 + 3) - (√7)/2]^{1/6}
 = 3.141587
0218132人目の素数さん垢版2021/03/24(水) 13:54:30.48ID:IfA1byk6
tan(1) < π/2.

(略証)
 1 = π/3 - δ,
 δ = 0.04719755
加法公式で
tan(1) = tan(π/3 - δ)
 = {tan(π/3) - tanδ}/{1 + tan(π/3)tanδ}
 = (√3 - tanδ)/{1 + (√3)tanδ}   
 < 3/(√3 + 4 tanδ)
 < 3/(√3 + 4 δ)
 < 3/(1.732 + 4・0.047)
 = 3 / 1.92
 = (5/4)^2
 < π/2,

なお tan(π/4) = 1,
0219132人目の素数さん垢版2021/08/07(土) 17:53:18.44ID:RGRd4R20
>>196
√(π/1.2) = φ を利用して「円積問題」を解く。

半径rの円が与えられたとする。
(-r,0) (6r/5,0) を直径の両端とする円を描く。
y軸との交点は A(0,±L) L= r√(6/5),
B(L/2,0) とすると AB = (√5)/2・L
Bを中心とし、Aを通る円周を描く。
x軸との交点は C(Lφ,0)
OCを一辺とする正方形を描く。
その面積は与えられた円の面積にほぼ等しい。
0222132人目の素数さん垢版2021/10/26(火) 12:30:08.68ID:yHWX4IjJ
>>218
arctan(2/π)
 = 2 arctan(2/[π + √(π^2 + 4)])    (← 半角)
 < 2 arctan(π/[π^2 + 1 - 1/π^2])
 < 2 arctan(0.291745)
 < 2{0.291745 - (0.291745^3)/3 + (0.291745^5)/5}  (←マクローリン)
 < 0.567781
 < (π/2) - 1,
∴ arctan(π/2) > 1,
∴ π/2 > tan(1).

*) √(π^2 + 4) > π + (2/π) - 2/(π^3),
0224132人目の素数さん垢版2021/10/26(火) 21:30:54.71ID:yHWX4IjJ
>>176
X=π^3 とおくと
 X^4 - 31X^3 - 187 = 0,
 X = 31.006273254
 X^(1/3) = 3.141592538

(別解)
 X^3 - 31X^2 -6 = 0,
 X = {31 + [31^3 +81 +9√(2・31^3 + 81)]^(1/3) + [31^3 +81 -9√(2・31^3 +81]^(1/3)}/3
  = 31.0062409821
 X^(1/3) = 3.141591448
0225132人目の素数さん垢版2022/11/02(水) 09:23:11.80ID:nyCJInth
πの無理数性の新証明を見つけたら修士論文くらいにはなりますか?
0226132人目の素数さん垢版2022/11/26(土) 08:25:28.77ID:cOoLGtHt
無理じゃないの?
0227132人目の素数さん垢版2022/11/26(土) 08:56:53.87ID:xE0lerTW
それは使う公理によるかもしれない
0228132人目の素数さん垢版2022/12/04(日) 22:52:17.88ID:ARLavnYo
円周率の新発見7π-21=0.9911485751285このあと1-0.9911485751285とやると0.0088514248715になる
あとはこれに円周率3.1415926535897を足し算していくと22で22.0000000000000になります不思議です
0229132人目の素数さん垢版2022/12/15(木) 14:42:41.61ID:j/qjOTBM
円周率の無理数性は選択公理とは独立か?
0231132人目の素数さん垢版2023/01/08(日) 19:44:03.96ID:uTvFHkA6
真円どころか楕円の面積すら
ゲロ四苦八苦してるじゃん
0232132人目の素数さん垢版2023/02/01(水) 22:25:06.25ID:46mUOm8U
無理数であることがすぐわかるような有理近似列はないか
0234132人目の素数さん垢版2023/02/06(月) 18:20:39.90ID:nxkRm8+k
ChatGPTに質問してみたら答えがわかるかもしれないな。
0236132人目の素数さん垢版2023/02/09(木) 09:26:31.59ID:IHBT6Jl6
arctanが代数函数ではないことは零点を見れば明白だが
πの連分数展開からは代数性は明白ではない。
2次の無理数の特徴づけに類したものが必要であろう。
0237132人目の素数さん垢版2023/02/09(木) 09:52:54.20ID:IHBT6Jl6
訂正
代数性はー−>非代数性は
0238132人目の素数さん垢版2023/02/10(金) 09:36:46.30ID:Gw+Md1wQ
こういうことは成り立つか?
「循環をしない無限に続く連分数により与えられる数は無理数」?
0239132人目の素数さん垢版2023/02/10(金) 09:42:05.02ID:TLtLyVEx
無限に続けば無理数
0240132人目の素数さん垢版2023/02/10(金) 17:27:35.29ID:pqsB4YD7
有理数ではない、すなわち無理数というののは素朴に実感できるが
超越数というのは実感に訴えにくい

だから解析数論という分野があるんだろう
0241132人目の素数さん垢版2023/02/10(金) 21:53:41.31ID:sabvD+5c
無理数というのを
有理数からの離れ具合で理解すれば
超越数は素朴に実感できる
0242132人目の素数さん垢版2023/02/11(土) 11:54:45.00ID:pR1ugPcF
有限状態オートマトンから生成される、小数展開の列が定める実数については
それが代数的無理数にはならないというようなことを(うろ覚えだが)
たしか、ファンデルポールテンという人が示したというような記憶がある。
でもどこに証明が載っているかを知らない。
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況