X



トップページ電気・電子
1002コメント408KB
【電気】理論・回路の質問【電子】 Part17
■ このスレッドは過去ログ倉庫に格納されています
0001新しいことに挑戦したい2018/04/11(水) 12:55:49.19ID:ugFt0cyK
.
電気・電子の理論的な学習している人のための質問と回答スレッド

【電気】
 ・静電気・静磁気、電界・磁界、磁気回路、静電・電磁誘導
 ・直流回路、交流回路(正弦波・歪波、三相、多相)、回路網、共振、フィルタ、
 ・各種ブリッジ、四端子定数、過渡現象、分布定数回路、進行波、等
 ・電磁気学とベクトル解析
【電子】
 ・電子物性、電子デバイス、半導体工学
 ・電子管(真空管・撮像管・光電管等)
 ・半導体素子・回路(ダイオード・トランジスタ・FET・オペアンプ・等)
 ・アナログ回路(低・高周波等)、デジタル回路、電源回路等
【共通・他】
 ・電気・電子に関する数学・物理・化学
 ・電気・電子計測、各種定理、電気電子材料・素子、制御理論など。
等々に関すること。

*質問レベルの目安は幅広く、高校・工高〜高専〜大学以上くらい。
*各種電気・電子関連資格取得を目指している方もどうぞ。
*質問は「お絵かき」の活用、画像のUpLoadが推奨されます。(URLは初心者スレ参照)

●過去スレ (直近6スレのみ)
Part16 2017/07/15 〜 2018/04/08 https://rio2016.5ch.net/test/read.cgi/denki/1500113179/
Part15 2016/04/23 〜 2017/07/15 http://rio2016.2ch.net/test/read.cgi/denki/1461380431/
Part14 2015/07/18 〜 2016/04/23 http://wc2014.2ch.net/test/read.cgi/denki/1437146128/
Part13 2015/02/07 〜 2015/07/17 http://wc2014.2ch.net/test/read.cgi/denki/1423308158/
Part12 2014/05/19 〜 2015/02/05 http://wc2014.2ch.net/test/read.cgi/denki/1400459501/
Part11 2013/04/26 〜 2014/05/15 http://ai.2ch.net/test/read.cgi/denki/1366961834/
0721774ワット発電中さん2018/11/04(日) 06:23:11.01ID:kURfqhdD
受電端から送電端にむかって伸びる矢印の図以外の例はどこで見れるのでしょうか・・・(・ω・)
>>711
>>718
0722774ワット発電中さん2018/11/04(日) 08:11:19.56ID:uf1UpJO1
おれは電力のことはわからんが,フェランチ効果というのは,急に負荷を切断したときにおこる
過渡現象だろう.ベクトル図うんぬんは定常状態のインピーダンスを解析する手段だから,おかど
ちがいだ.これは電流を波動とみなして,送電線を分布定数回路で解析してはじめて理解できる
もの.というか,整合端を急に解放端にしたら,そこから仮想的に伸びた電線から反射波が
やってきて,解放端の電圧はいっしゅん, 2倍になるのはあたりまえのこと.
0723774ワット発電中さん2018/11/04(日) 08:24:29.32ID:uOJXz9/C
>>722
無線の世界では、送信端と受信端のインピーダンスと、伝送路の特性インピーダンスを、合わせますが、
送電線の場合でも それは同じなのでしょうか?
また、不整合による反射もあるのでしょうか?
0724774ワット発電中さん2018/11/04(日) 08:42:02.86ID:uf1UpJO1
おれは電力のことはわからんが(何度も言っておく)、通常は送電線の特性インピーダンスを
考えることはしないだろう。50Hzの波長は6000kmになるから、通常、送電線はそれより短く
て、定常状態の解析だけで間に合うからだ。インピーダンス整合の概念もないだろう。
しかし、送電線の負荷を急に切った、というようなときは、その波形に高い調波成分が
含まれて、それについては分布定数としての解析が必要になる。
0725sage2018/11/04(日) 08:54:54.23ID:uf1UpJO1
送電線を平行2線路として特性インピーダンスを計算してみた。線間 5m、線の直径 0.1mなら
800Ωくらいになるね。ただ、普通は 3相の伝送用に 3本使われるので、両端の電線で運ばれる
相についてはそれより 1割くらい高くなる。
0726774ワット発電中さん2018/11/04(日) 09:05:11.72ID:VgtlhLt2
>>721
だからそれは送電端基準で書くか受電端基準で書くかの違いで、本質的には同じ図
(送電端電圧から線路のRやLに生じる電圧を差し引いて受電端電圧とするか、
受電端電圧から線路のRやLに生じる電圧を積み上げて送電端電圧とするか)

受電端基準で書いてある図が多いのは、受電端電圧に対する線路電流の位相を確定して書くことができるから
(完全無負荷の場合は対地静電容量だけを考えて、受電端電圧に対して90°進みと確定することができる)
送電端基準で書きたい場合は、
送電端電圧に対する線路電流の位相は受電端基準で作図してから求めるという本末転倒なことになる
0727774ワット発電中さん2018/11/04(日) 09:22:04.88ID:VgtlhLt2
>>722
電気工学ハンドブックを見ると
「一般的には,一線地絡やフェランチ効果によって生ずる商用周波数の過電圧は過渡現象の範ちゅうに含まれない」
という文章がある(解釈が難しいけど)
>>705のPDFファイルにある式やハードウェアシミュレータでの実験結果にも時間のファクターは入っていない
0728774ワット発電中さん2018/11/04(日) 10:28:49.03ID:VgtlhLt2
まあ自分もよく分かってないわけだが、
過渡現象や分布定数回路を考えなければいけない話題に首を突っ込んだりはしない
逃げてます
0730774ワット発電中さん2018/11/04(日) 10:33:19.54ID:xEPzkwfv
集中定数回路でシミュレーションできそう
対地静電容量が犯人みたいだから大きめにして
0732774ワット発電中さん2018/11/04(日) 10:59:33.57ID:uf1UpJO1
まあ、所変われば品かわる、だね。高周波屋は分布定数で解析するほうが楽に感じるけど、
そうでない人たちは集中定数でやるんだね。いずれにせよベクトル図は 50Hzの解析で、起きて
いる現象は商用周波数でない高調波によるのだから、ベクトル図を書くのはやめたほうが
いい気がする。
0733774ワット発電中さん2018/11/04(日) 11:01:03.95ID:mjTjva9F
>>732
>起きている現象は商用周波数でない高調波によるのだから、
間違えてないか?
0734774ワット発電中さん2018/11/04(日) 11:04:02.42ID:xEPzkwfv
何も変化が起きなければ何も起きないから
727の言葉を借りれば
過渡現象の範ちゅうに含まれないが定常状態でもないし周期的でもないし約3分間
0735774ワット発電中さん2018/11/04(日) 11:14:19.04ID:uf1UpJO1
>>731
定常状態じゃないでしょう。
1. 変化させたとき
2. 一時的に
おこるんでしょう。と思って、調べてみたら、フェランティの発見したのは過渡現象と解放端での定常
現象の混合したもので、ネットの解説は後者についてだけ、ベクトル図で説明しようとしたものだね。
その部分については、たしかに定常的な現象だ。
0736774ワット発電中さん2018/11/04(日) 11:16:48.17ID:SiMuzkLa
フェラうんちは深夜の軽負荷時に力率改善用コンデンサを切り忘れるとなる現象
0738774ワット発電中さん2018/11/04(日) 11:24:19.08ID:rcPR7XM1
本人が面白いと思っているっぽいんだけど面白くない時の対応方法を身に付けたい
0739774ワット発電中さん2018/11/04(日) 11:27:17.93ID:xEPzkwfv
マジレスしてしまうが
>>736
力率改善用コンデンサを切り忘れたのを切ったときの現象は定常現象なのかい?
0740774ワット発電中さん2018/11/04(日) 11:28:38.38ID:xEPzkwfv
違った
>>736
力率改善用コンデンサを切ったのをまた入れて18時間後の現象は定常現象なのかい?
0742774ワット発電中さん2018/11/04(日) 11:43:20.81ID:VgtlhLt2
>>735
高周波屋なら楽に分かると思うから
とりあえず>>705のインドのおばちゃんの式を解説してくれないかな
0743774ワット発電中さん2018/11/04(日) 12:25:39.21ID:uf1UpJO1
高周波屋的には、長い送電線を給電線(伝送線)と見なせる。特性インピーダンスに照らして
給電側は短絡に近い状態で、もう一方は解放された給電線と考えることができる。この
給電線は両端とも整合されていないので、定在波が乗る。給電端は定在波の節に近い
ところ、解放の先端はそれから見れば腹に近いところだろう。すると、定在波の性質として
解放端側の電圧は高くなる。

送電線上の商用周波数の波長は 数1000km とかごく長く、通常の送電線ではその一部を
見ていることになる。送電線が長くなれば、(定在波の波形を長くとるので)強く表れる。
またケーブルの容量を増すと、波長短縮率の関係で定在波の波長は短くなり、やはりこの
現象は強く表れる。
0744774ワット発電中さん2018/11/04(日) 12:39:49.62ID:uf1UpJO1
上の理論によれば、送電線をごく長くしていくと、(両端のインピーダンス整合をとらないで使うと)
たとえ損失のない伝送線でも、ある長さでもう一端の電圧は減少に転じ(逆フェランティ効果?)、
そしてとうとう、電圧の発生しない長さに到達する。ここでは送電線は機能を失う。それを過ぎると、
また電圧は復活してくる。
0745774ワット発電中さん2018/11/04(日) 12:40:48.69ID:mjTjva9F
>>735
wikiに書いてるようなフェランティの発見した現象を言うのではなく、それを追いかけて行った結果
定常部分でも電圧上昇する現象を見つけたから、その部分をフェランチ効果としてるんじゃなかろうか。
>>727の引用や日本電気技術者協会も過渡部分は入れてないからね。
https://www.jeea.or.jp/course/contents/03301/
07467442018/11/04(日) 12:55:16.82ID:uf1UpJO1
ごめんごめん、定在波比 (VSWR) の関係で、電圧ゼロになるわけではない。しかし、ある距離以降
は電圧減少になる、と考えられる。それは給電側から 2000〜3000km のところだ。
0747774ワット発電中さん2018/11/04(日) 12:58:41.78ID:rcPR7XM1
フェランチ効果と波の節/腹の話は全く別物だよね...。
0748774ワット発電中さん2018/11/04(日) 13:01:04.96ID:uf1UpJO1
>>747 いや、高周波屋的な解釈では、(定常状態の)フェランチ効果なるものは、定在波による
現象だ、という結論。
0749774ワット発電中さん2018/11/04(日) 13:01:26.43ID:mjTjva9F
まぁ、高周波的な伝送路の考えを適応できるのは、単位長あたりのインダクタンス、キャパシタニスで
決まる最低周波数以上の領域だからなぁ。
0751774ワット発電中さん2018/11/04(日) 13:08:56.87ID:W9PE9GhB
50Hzでも伝送路として高周波的に解釈すると、フェ現象が出ないわけじゃないと言っています
0752774ワット発電中さん2018/11/04(日) 13:10:11.37ID:mjTjva9F
定在波によると主張するなら波長に対して正規化するだろうが、それもしてないし
1/2波長も実測結果がないのに そんな主張してるようには見えんがなぁ。
0753774ワット発電中さん2018/11/04(日) 13:15:35.09ID:SiMuzkLa
>>751
商用周波数でもコンデンサ切り忘れるだけで簡単に出る現象だよ
0754774ワット発電中さん2018/11/04(日) 17:38:08.88ID:jE3gUoiB
フェランチ効果って送電線のインダクタンスに進み電流が流れる逆起電力によるものでしょ?
理解は定常解析で十分間に合うんだけど、何小難しい事考えてんのおまえら

分布定数回路とか言ってる奴はアホだと思ってる
0755774ワット発電中さん2018/11/04(日) 17:41:22.37ID:rcPR7XM1
50Hzだと一波長は約6000km
そんなになが〜い送電線があるなら影響はあるのかもしれないけどそのイメージがにわかには信じがたいね
0756774ワット発電中さん2018/11/04(日) 17:42:00.73ID:jE3gUoiB
あくまでもRLC回路によるものだから
Lを勘定しないで考えてる奴は迷宮入りするだろうな
0757774ワット発電中さん2018/11/04(日) 17:51:11.50ID:uH2oPhfI
フェランチ効果の説明してるあの有名なベクトル図がどういう条件でやってんのか理解してるなら
こんな的外れな議論を延々続けないって
0758774ワット発電中さん2018/11/04(日) 18:00:02.48ID:rcPR7XM1
結論

世間の学者や研究者をなめすぎ

ちょっとかじった奴がふと思った疑問などすでに検証済みなことがほとんどである
0759774ワット発電中さん2018/11/04(日) 18:18:13.80ID:mjTjva9F
一陸技も電験3も持ってるが、電波側の頭で考えると まぁID:uf1UpJOようなことを考えたことはあるな。
実際、波長10.4kmの長波送信所もあったし。
0760774ワット発電中さん2018/11/04(日) 22:50:50.29ID:kURfqhdD
ああそうか、L(としてのモーター)をつないだまま(それがモーターの先の)「負荷のみ」を外した状態、なのかな・・・
0761774ワット発電中さん2018/11/05(月) 00:27:14.53ID:58VSmtFS
集中定数ならベクトル図なんて書くまでもなく計算出来そうだけどな。
LとCのLPFだって負荷オープンなら入力より高い電圧がでるのは当たり前だし。
0764774ワット発電中さん2018/11/05(月) 11:46:29.36ID:ytZ+Hk5i
>>757
どういう条件だったんですか!?
0766774ワット発電中さん2018/11/05(月) 21:24:59.29ID:o2wkpklK
>>765
進み電流が流れる原因が運用上は過渡的な異常にあると言ってるだけにも聞こえる

教科書には進み電流で受電端の電圧が送電端よりも高くなる現象としか書かれていない

実務か理論か
どちらに重きを置くかによっても話し方が変わるような
0767774ワット発電中さん2018/11/05(月) 21:33:12.82ID:H8bfICeK
負荷が軽いとか無負荷って言い方は誤解を招くかもね
厳密に言えば送電点から見た負荷側が容量性インピーダンスだったときに
送電電圧よりも受電電圧が高くなる現象がフェランチ効果
0768774ワット発電中さん2018/11/05(月) 21:41:57.97ID:6Jw7BCSh
なぜ過渡ではなく定常であることが理解できないのか
0770774ワット発電中さん2018/11/05(月) 22:00:49.20ID:yi/NHNkd
>>766
こじ付けっぽい
>>722はウキ日本語版に影響されてるとしか思えない

>>767
そんなのここまで議論が進んでいる状況では言わずもがなでしょ

英語版もよく読んでなんで日本語版があんな表現になってるのかせつめいしてほしい
0772774ワット発電中さん2018/11/05(月) 23:04:26.21ID:o2wkpklK
仕方がないので手元にあったテキストを調べてみた

・電気工学ハンドブック第六版
・電気学会大学講座「送電・配電」

・電気学会大学講座「送配電工学」

この3つのテキストで面白い違いがあって、前者2つは「フェランチ現象」と記述がある後者は「フェランチ効果」と書いてある。


そして「フェランチ現象」と書かれているテキストは負荷の遮断にともなう現象と記述されていた
(電気系等は通常の動作範囲では遅れ電流で動作しているという注意書きと一緒に)

一方「フェランチ効果」と記述している教科書は、あくまでも受電端と送電端の電圧の関係だけで、負荷の遮断がどうのこうのの記載は一切無い
0773774ワット発電中さん2018/11/05(月) 23:20:02.90ID:482vkELp
自宅PCにもLTSpiceとかインスコしてる方いらっしゃいませんか?
容量性負荷だけでフェランチエフェクト再現できます?

海外の解説動画だと L も含まれてるんよね・・・
0774774ワット発電中さん2018/11/05(月) 23:34:15.56ID:yi/NHNkd
ferranti phenomenonとFerranti effect は違うのか?

ウキ日本語版は効果と現象を取り違えてるのかそれとも電圧上昇ならどっちでもいいのか?
0775774ワット発電中さん2018/11/05(月) 23:50:59.03ID:6Jw7BCSh
もしかして負荷の遮断って書かれてるから過渡だと勘違いしちゃったの?
0776774ワット発電中さん2018/11/05(月) 23:56:18.28ID:6Jw7BCSh
>(電気系等は通常の動作範囲では遅れ電流で動作しているという注意書きと一緒に)

ついでに負荷遮断して無負荷になるとケーブルや送電線による静電容量により進み電流が流れるって書いてるでしょ
それは定常状態での話になるんだよ
0777774ワット発電中さん2018/11/06(火) 00:19:08.52ID:Yy5nSlv7
>>776
そんな事を問題にしてるんじゃなくて、
結局フェランチ現象が分析の対象になるのって実用上は過渡的な状態遷移の中での話なんじゃないかって話(IDたどってもらえば分かると思うがフェランチ現象そのものが過渡現象だとは言ってない)

電力系統上の過渡安定度とかそういった意味での過渡現象だってこと
0778774ワット発電中さん2018/11/06(火) 00:25:28.14ID:vacuzTa7
定常での説明してるんだから定常での話でしょw
過渡の問題なら過渡的な解説をしてくる
0779774ワット発電中さん2018/11/06(火) 02:50:20.83ID:ZJLjPyTd
>>759
よさみ17.4kHz
えびの22.2kHz
そのシリアル通信みたいな送信周波数の送信所どこだよ?
0780774ワット発電中さん2018/11/06(火) 03:48:09.60ID:ZJLjPyTd
今頃気づいたけど>>705のPDFファイルのうちMATLABのセクションは分布定数回路をシミュレーションしてるんだな
前のセクションに書いてある式とは何の繋がりもない
しかも間違ってるっぽい
ID:uf1UpJO1は高周波屋を自称してるならすぐに気付くべきだと思うけどなあ…
0781774ワット発電中さん2018/11/06(火) 07:28:28.44ID:ocr4RrOn
人為的や制御的な対応の遅延が生じて事業所全体が容量性負荷となったときによく起こる電圧上昇がフェランチ現象

ところで、一晩でも一週間でもずっと一定の容量性負荷だった場合、一定の電圧上昇がずっと続くんだけど
フェランチ効果を過渡現象ととらえてる人の定常状態の定義を知りたい
0782774ワット発電中さん2018/11/06(火) 07:46:46.76ID:MLaPHnpF
強電のことは知らないけど、フェランチとやらは強電も弱電も関係ないでしょ。
解放端からの反射が重なるというだけじゃないの。
0783774ワット発電中さん2018/11/06(火) 08:04:15.50ID:SZlPXAqc
>>773
そんなのシミュレータを使わなくても普通に交流回路の計算すればいいでしょ。
Vsが定電圧なら並列のコンデンサは無関係だから簡単でしょ?
Vr=(-j2/(ωC))/(r+j(ωL-2/(ωC))
0785774ワット発電中さん2018/11/06(火) 08:57:41.11ID:C4SJVFyG
>>780
シミレーション結果もX,Yのスケールが違うから はっきりわからない。
|Vs|<|Vr|を言うなら、スケール同じにして半径220kV/√3の円を書いた上て
軌跡がその円の内側にあること言わないといけない。

>>782
スレをもう一回 熟読し
07867852018/11/06(火) 09:20:06.39ID:C4SJVFyG
シミュレーションな。 ちょっとでも間違うと突っ込まれる魔法のワードw
0787774ワット発電中さん2018/11/06(火) 10:28:47.79ID:QkwvdmFy
>>784
Vr=(-j2/(ωC))/(r+j(ωL-2/(ωC))) なんですか? Vsはどこにあるのでしょうか・・・
0788774ワット発電中さん2018/11/06(火) 14:51:03.42ID:SZlPXAqc
>>787
分からなくて質問してるんじゃないよね。
気付いたけど面倒だから放置しただけ。
0790774ワット発電中さん2018/11/06(火) 17:45:24.39ID:ZJLjPyTd
>>746
電圧ゼロではなく、ほぼN/2波長の送電線長さでほぼVr=Vsになるという計算結果になったんだけど、
合ってます?
0792774ワット発電中さん2018/11/06(火) 19:44:05.20ID:cG/qaL/8
>>785
解放端云々はともかく、送電線とか事業所とか220kVとかは関係なく、信号源と電線とLCRで再現できる現象なんじゃないの。
0793774ワット発電中さん2018/11/06(火) 19:52:43.80ID:C4SJVFyG
>>792
インドのおばさんの論文ベースの話、
いきなり飛ばした話されても。
0794774ワット発電中さん2018/11/06(火) 20:01:50.12ID:jz/3Sp3v
インドの大学やつはただの中距離以上の送電線の計算で良くつかわれるπ型等価回路でしょ
0795774ワット発電中さん2018/11/06(火) 20:10:49.28ID:C4SJVFyG
言ってる意味わからんかなぁ。

結果のグラフから|Vs|<|Vr|を言うなら |Vs|=|Vr|を線を書いとかないと分からんだろ
って、グラフの書き方を言ってるんだが。
0796774ワット発電中さん2018/11/06(火) 20:17:30.24ID:jz/3Sp3v
面倒なんで読んでないから知らんけど
最初の方に載ってるπ型等価回路のやつで計算してるなら必ずしも|Vs|<|Vr|となるわけじゃないでしょ
てか自分で計算してみりゃいいじゃん
0799774ワット発電中さん2018/11/06(火) 20:25:30.06ID:C4SJVFyG
>>798
インドのおばさんが

『この図の形状から明らかなように、得られるフェーザ電圧Vsは、| VR | > | Vs |』
と論文で主張してるんだが、

XYスケールがちがったり、|Vs|=|Vr|の線(円)を書いてないと
シミュレーション結果図から判断できんだろ。
っていってるの。

計算どうこうの話じゃないてこと。
0800774ワット発電中さん2018/11/06(火) 20:32:13.38ID:jz/3Sp3v
なんて書いてあるか知らんが代入する数値次第で| VR | > | Vs |だろうと逆だろうとどうとでもなる
俺は読んでないが、お前は読んだのだから分かるだろ
0802774ワット発電中さん2018/11/06(火) 21:01:07.65ID:jz/3Sp3v
なんだ読んでも理解できない人か
図が分かりにくいって騒いでるだけかよ
0803774ワット発電中さん2018/11/06(火) 21:05:45.15ID:C4SJVFyG
なんだ
>なんて書いてあるか知らんが
が免罪符になるって思ってる人か。
0804774ワット発電中さん2018/11/06(火) 21:07:55.77ID:jz/3Sp3v
代入する数値次第で| VR | > | Vs |だろうと逆の結果だろうと出せる
だからどんな結果になっていても不思議に思わないから読む気にもならないってだけ
そういうお前は読んでも理解できなかったんだろ?
0805774ワット発電中さん2018/11/06(火) 21:13:06.72ID:C4SJVFyG
>>804
>代入する数値次第で| VR | > | Vs |だろうと逆の結果だろうと出せる
そんなの分かってることじゃないか。
元がインドのおばさんの論文ベースで言ってるんだから、おばさんのモデルで話してるんだが。

読まずに まぁ、いきなり絡むのもねぇw
0806774ワット発電中さん2018/11/06(火) 21:14:32.90ID:jz/3Sp3v
いや、お前分かってないだろ?w
俺がそういってるから、そうなんだろうなと思ったんだろw
0807774ワット発電中さん2018/11/06(火) 21:16:47.44ID:C4SJVFyG
>>806
君がでてくる何時間も前に 指摘に書きこみしてるのに?
へぇ
0810774ワット発電中さん2018/11/06(火) 21:28:09.25ID:ZJLjPyTd
インドのおばちゃんのペーパーは
・集中定数回路(π型等価回路)
・分布定数回路(MATLABシミュレーション)
・ハードウェアシミュレーション
の3つのセクションに分かれていて、相互の繋がりがない

π型等価回路の結論は間違ってるし、MATLABの式も多分間違ってる
信じられないほど低クオリティのペーパーだけど、
どこが間違ってるか考えることで逆に勉強になるw
0811774ワット発電中さん2018/11/06(火) 21:31:41.83ID:C4SJVFyG
>>810
余談だけど、シミュレーション結果の図は ほとんど| VR |< | Vs | に見えてフェンラチ効果が
出てないように見えるだが。
0813774ワット発電中さん2018/11/06(火) 21:51:13.45ID:ocr4RrOn
この議論は有意義なのか不毛なのかどっちなんだい?
0814774ワット発電中さん2018/11/06(火) 22:04:52.04ID:b8KDhrXN
>>813

禿はあけぼの
やうやう白くなりゆく生え際少し上がりて
紫立ちたる髪の細くたなびきたる

     ノノ   
   〆⌒ ヽ彡 
  (´・ω・`)  
Mr.フェランティ
0815774ワット発電中さん2018/11/06(火) 22:20:47.83ID:j679m8+2
フェランチ効果なんて電流が流れてるコイルが
突然電流切られたときに
代わりに電源として電流を流そうとする動きで定性的には理解出来るし
何がそんなに問題なんだ?
0818中身のない 重ね合わせの理 のイメージ2018/11/07(水) 12:05:26.81ID:BhPO/vyi
>中身は無くてもイメージがあればいい

いいか、みんな。かつて10月10日は体育の日だったが

   (゚д゚ )
   (| y |)

今はもう、別の重要な記念日となっている
 十       十
 日  (゚д゚)  月
  \/| y |\/

       十十
   (゚д゚) 日月
   (\/\/

つまり、萌えの日、そういうことだ

   ( ゚д゚)
   (| y |)
0820774ワット発電中さん2018/11/08(木) 09:16:02.75ID:v+ksFlb+
つまりフェランティおきたら(採算が合うかどうかはさておき理屈の上では)共振ずらすために
数千km程度のダミー電線を延長しても解消できる、ということでしょうか?・・・(・∀・;) >最後のグラフ
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況