分からない問題はここに書いてね448

1132人目の素数さん2018/10/22(月) 23:34:13.76ID:E/Wq6zj4
さあ、今日も1日がんばろう★☆

前スレ
分からない問題はここに書いてね447
https://rio2016.5ch.net/test/read.cgi/math/1537106483/

2132人目の素数さん2018/10/23(火) 00:49:04.01ID:Nx8uF82W
削除依頼を出しました

3132人目の素数さん2018/10/23(火) 00:57:24.49ID:vskOoxji
しつもんいいすか

4132人目の素数さん2018/10/23(火) 00:59:40.14ID:tcSq+Pcw
いいよ。
でも完全性定理と数理論理のモデル理論はダメだからね。

5132人目の素数さん2018/10/23(火) 01:01:08.96ID:pCOy/RUp
なぜですか?

6132人目の素数さん2018/10/23(火) 01:02:45.54ID:tcSq+Pcw
面白くないからに決まってるジャン

7132人目の素数さん2018/10/23(火) 01:03:06.08ID:vskOoxji
画像貼るんでちとまってください

8132人目の素数さん2018/10/23(火) 01:04:39.25ID:tcSq+Pcw
おう、
待つよ!

9132人目の素数さん2018/10/23(火) 01:06:04.33ID:vskOoxji
https://i.imgur.com/kgByavn.jpg

https://i.imgur.com/81mXtaZ.jpg

1枚目の問題の解答が2枚目なのですが、途中に出てくるmaxは正しくはminではないでしょうか

10132人目の素数さん2018/10/23(火) 01:19:35.42ID:tcSq+Pcw
その通り

11NAS6 ◆n3AmnVhjwc 2018/10/23(火) 06:18:04.06ID:ZfCv4s1W
∫1→∞ 1/x^2 dx
について
1→∞[-2/x]
1→∞[0+2]=2
とするんですが違和感がありすぎます
x=1のとき高さが2であるとしかこれは言っていなくて
積分ならば当然面積なので
凾アれね直角三角形の面積
高さが2だから面積が2なんて数学はなくて
当然(底辺×高さ)/2ですよね
しかるに
∫1→∞ 1/x^2 dx

底辺∞高さ2の直角三角形だから
(∞×2)/2=∞
とこうなるんじゃないのん?
おらが間違えたんならどう間違ったか解説してくれんかのう

12132人目の素数さん2018/10/23(火) 12:06:11.56ID:ow6G4yxf
そもそも1だし

13132人目の素数さん2018/10/23(火) 12:47:28.20ID:D8qI/Ke+
高さ1底辺∞の直角三角形=高さ1底辺∞の帯状領域(直方体)
だし
積分で面積を求めた領域≒(x=1付近を除けば)点(0,1)から延びる半直線
だから
違和感持つ方が無理だろ

> 1→∞[0+2]=2
左辺の変な記号が一つ上の行と同じ意味なら右辺は0だなw

14NAS6 ◆n3AmnVhjwc 2018/10/23(火) 15:55:25.77ID:ZfCv4s1W
そかそか

∫1→∞ 1/x^2 dx
について
1→∞[-1/x]
1→∞[0+1]=1
とするんですが違和感がありすぎます
x=1のとき高さが1であるとしかこれは言っていなくて
積分ならば当然面積なので
凾アれね直角三角形の面積
高さが1だから面積が1なんて数学はなくて
当然(底辺×高さ)/2ですよね
しかるに
∫1→∞ 1/x^2 dx

底辺∞-1高さ1の直角三角形だから
((∞-1)×1)/2=∞
とこうなるんじゃないのん?
おらが間違えたんならどう間違ったか解説してくれんかのう

∫1→∞ 1/x^2 dx
の面積って1なの?∞なの?どっち?

15NAS6 ◆n3AmnVhjwc 2018/10/23(火) 16:10:04.55ID:ZfCv4s1W
dx=1として計算してみるよ
1→∞[-1/x]

x=1 y=1
x=2 y=0.5
x=3 y=0.33
x=4 y=0.25

ここまでの面積
1+0.5+0.33+0.25=2.08

∫1→∞ 1/x^2 dx
の面積は1にはどうしても思えなくて∞だろ

16NAS6 ◆n3AmnVhjwc 2018/10/23(火) 16:22:28.86ID:ZfCv4s1W
ああ、ちゃうな

dx=1として計算してみるよ
y=1/x^2

x=1 y=1
x=2 y=0.25
x=3 y=0.11
x=4 y=0.0625

ここまでの面積
|1+0.25+0.11+0.0625|=1.4225

∫1→∞ 1/x^2 dx
の面積は1にはどうしても思えなくて∞だろ

17NAS6 ◆n3AmnVhjwc 2018/10/23(火) 16:29:56.14ID:ZfCv4s1W
だから無限遠の重力ポテンシャルをゼロにしたなんちゃら宇宙速度
ってそもそも面積∞だから使い物にならんよねえ

18NAS6 ◆n3AmnVhjwc 2018/10/23(火) 16:38:43.47ID:ZfCv4s1W
さあ、どうやって誤魔化しますかぁ?

19132人目の素数さん2018/10/23(火) 18:30:04.04ID:OzGGp1aP
三角形の合同条件3つが合同条件になる証明ができない高校生です笑笑
検索しても出なかったので詳しい方お願いできないでしょうか。
メモします

20132人目の素数さん2018/10/23(火) 19:56:36.72ID:HZxN4IQL
それは例えばヒルベルトの公理系からスタートするのかR^2の座標とっていいのかでも話がだいぶ違うな。
後者でいいん?

21132人目の素数さん2018/10/23(火) 20:09:28.39ID:D8qI/Ke+
>>16
> x=1 y=1
> x=2 y=0.25
> x=3 y=0.11
> x=4 y=0.0625
>
> ここまでの面積
> |1+0.25+0.11+0.0625|=1.4225

お前が足してるのは左上の点が1/x^2のグラフ上にある長方形の面積だから
1/x^2のグラフから大いにはみ出てる(積分を上から評価することはできる
右上の点がグラフ上にあるようにするなら最初の1x1の長方形は範囲外だから足したらダメ
そうするとお前の示したのは 0.4225 < 求める積分 < 1.4225 になるということだけ

22NAS6 ◆n3AmnVhjwc 2018/10/24(水) 06:07:08.23ID:9MpqS1Xq
そもそも一般に
∫1→∞ 1/r^2 dr = 1

∫0→1 1/r^2 dr は相似なのに = ∞ 

なんで1と∞を混在して採用しているわけさ?
ご都合主義なん?

相似なんだから1か∞に統一すべきじゃないのか?

23NAS6 ◆n3AmnVhjwc 2018/10/24(水) 06:10:02.83ID:9MpqS1Xq
だから、結局これは

∫0→∞ 1/r^2 dr = 3 or ∞

3なの?∞なの?

24NAS6 ◆n3AmnVhjwc 2018/10/24(水) 06:20:28.20ID:9MpqS1Xq
∫1→∞ 1/x^2 dx = 1
とする
∫0→1 1/x^2 dx = ∞
だけど
∫1→∞ 1/x^2 dx = 1
と縦横入れ替わっただけで相似だから
∫0→1 1/x^2 dx = 1
とする
それに1×1=1
ゆえに
∫0→∞ 1/x^2 dx = 1+1+1 = 3

こういうことにはならんのかえ?

25NAS6 ◆n3AmnVhjwc 2018/10/24(水) 06:25:51.61ID:9MpqS1Xq
ちょっと違うな

∫1→∞ 1/x^2 dx = 1
とする
∫0→1 1/x^2 dx = ∞
だけど
∫1→∞ 1/x^2 dx = 1
と縦横入れ替わっただけで相似だから 1×1=1の部分を足して
∫0→1 1/x^2 dx = 2
とする
ゆえに
∫0→∞ 1/x^2 dx = 1+2 = 3

こういうことにはならんのかえ?

26132人目の素数さん2018/10/24(水) 06:41:01.11ID:3j5JE9tl
そもそも1/x^2のグラフはy軸に対して対称であって縦横が相似じゃないぞ

27132人目の素数さん2018/10/24(水) 07:32:04.74ID:ujNVgao4
老子とプリンストン大学数学科の教授の中で断然トップの人はどっちの方が頭が良いですか?

28132人目の素数さん2018/10/24(水) 07:38:25.06ID:m80B8PeV
分子が1、分母がn桁の正整数である有理数全体からなる集合をS_nとする。
S_nの要素のうち、循環節の長さを最小とするものを1つ取り、その長さをm[n]とする。同様に循環節の長さを最大とするものについてその長さをM[n]とする。

(1)m[n]を求めよ。

(2)以下を示せ。
(a) lim[n→∞] m[n]/M[n] = 0
(b) M[n]≦M[n+1]
(c) M[n]<10^n

29132人目の素数さん2018/10/24(水) 08:18:21.72ID:Uf05cwkY
(10,a) = 1のとき
1/a の循環節の長さ = 10の Z/aZの乗法群での位数。
とくにそれはaより小さいからa<10^nのとき
1/a の循環節の長さ < 10^n。
またa|bのとき
1/a の循環節の長さ≦1/b の循環節の長さ。
pを素数としてa = p^e、vをp進付値mを10の Z/pZの乗法群での位数とするとき
v(10^(mn) −1) = v(10^m−1)+v(n)
により10のZ/aZの乗法群での位数はmp^(e-v(10^m-1))。
特にp = 7のとき10のZ/(p^e)Zの乗法群での位数は6・7^(e-1)。
10^(n-1)<7^e<10^n であるn,eをとるとき1/7^eの循環節の長さは
6・7^(e-1)であり特に
M[n] ≧ 6・7^(e-1) > 6/7 10^(n-1)。

30NAS6 ◆n3AmnVhjwc 2018/10/24(水) 10:07:27.41ID:9MpqS1Xq
>>26
y=1/x^2
∫0→1 1/x^2 dx = ∞

y=1/x^2
yとx入れ替えて
x=1/y^2
y=1/√x
∫1→∞ 1/√x dx = 1
1→∞[2√x]=1→∞[∞-1]=∞

あれ?なんでこっちは収束しないん?

31NAS6 ◆n3AmnVhjwc 2018/10/24(水) 10:08:36.50ID:9MpqS1Xq
>>26
y=1/x^2
∫0→1 1/x^2 dx = ∞

y=1/x^2
yとx入れ替えて
x=1/y^2
y=1/√x
∫1→∞ 1/√x dx = 1
1→∞[2√x]=1→∞[∞-2]=∞

あれ?なんでこっちは収束しないん?

32132人目の素数さん2018/10/24(水) 10:19:57.47ID:aiEw2PJ0
これの18問ってどうやって解けば良いの?
http://www.ms.u-tokyo.ac.jp/kyoumu/b20170524.pdf

33132人目の素数さん2018/10/24(水) 12:33:50.84ID:jMnLPXeV
前スレの992
点T(1,t)で円2つが交わるとすれば線分OTの垂直二等分線の第一象限で切り取られた部分が2円の中心間距離l。
l=(t^2+1)^(3/2)/2tはすぐ出てくるのであとは微分してください
おわり

34132人目の素数さん2018/10/24(水) 12:42:15.75ID:jMnLPXeV
前スレ993

2∫0→t (a^2-2(a-√(a^2-t^2))^2)dtで出てくるやろ

35132人目の素数さん2018/10/24(水) 12:46:55.95ID:GmAFxy11
>>32
最近はどうか知らんが
内部の学生有志で解答作ってないの?

36132人目の素数さん2018/10/24(水) 13:39:03.57ID:VW1kodY6

37132人目の素数さん2018/10/24(水) 13:45:51.73ID:FYBtdwzJ
宿題の答えを聞いているような感じ

38132人目の素数さん2018/10/24(水) 14:08:10.35ID:LB37fX3V
>>33

〔前スレ.992〕
 xy平面上に,原点Oでそれぞれx軸,y軸に接する2円があり,この2円は点P(1,p) (p>0) で交わっている。
この2円の中心間の距離の最小値を求めよ。

39132人目の素数さん2018/10/24(水) 14:19:01.65ID:rpF32u/S
>>32
(1)が5になった。自信なし。
(2)(1)のAF(X) = Qを満たすXをX0とすると
EG(X0)⊂X0⊂AF(X0) = Q
だから
X0∈{ AF(EG(X0)) = Q}
により
min {|X| ; AF(EG(X0)) = Q} ≦ 5。

40132人目の素数さん2018/10/24(水) 14:28:03.45ID:2NbXs9zf
>>36
x y の法6の類は交代していくだけなので
sin((xn -x0)π/3) + sin((yn -y0)π/3) = 0

41132人目の素数さん2018/10/24(水) 14:28:52.25ID:LB37fX3V
>>38

2円の中心は、線分OPの垂直二等分線とx軸,y軸の交点。
((pp+1)/2,0) (0,(pp+1)/(2p))
その距離の2乗は
 L(p)^2 = (pp+1)^3 /(2p)^2 = (27/16) + (1/4)(pp+4)(pp-1/2)^2 ≧ 27/16,
 L(p) ≧ L(1/√2) = (3√3)/4,

42132人目の素数さん2018/10/24(水) 15:37:10.80ID:K+mlOyzP
二円の直径(半径)は、それぞれ直角三角形の相似で簡単にわかる.
M = 4L^2 = (pp + 1)^2 + ( p + 1/p )^2 = q^2 + 3q + 1/q + 3 (q = pp と置いた)
M'= 2q + 3 - 1/(qq) = (2q^3 + 3qq - 1) = (2q - 1)(q+1)^2 /(qq)
増減表より M は q=1/2 にてミニマム値をとる事がわかる. (条件 q>0)
よって L_min = (1/2) * √(1/4 + 3/2 + 2 + 3) = 1/4 √27 = (3√3)/4.

43132人目の素数さん2018/10/24(水) 20:28:40.36ID:V7W4cdgn
前スレ>>897
サイコロを繰り返し投げ, 出た目が直前の回に出た目の約数でなくなったら終了する。
n回目にサイコロを投げ, かつその目が1である確率p[n]を求め, n回目に終了する確率をp[n]とp[n+1]を用いて表せ。

n回目が1になるのは, 次のような経過の場合である:
6→1, 6→3→1, 6→2→1, 5→1, 4→1, 4→2→1, 3→1, 2→1, 1

∴n回目が1である確率P[n]は,
P[n]={1+5・C(n-1, 1)・3・C(n-1, 2)}/6^n
=(3n²+n-2)/(2・6^n)
を得て,
n-1回目に終了していない確率は, 6・P[n]なので
, n回で終了する確率は,
6(P[n]-P[n+1])=(15n²-n-14)/(2・6^n)
を得る。

n回目が1である確率から, 直ちにn回で終了する確率が求められるところが面白いと感じますね。

44132人目の素数さん2018/10/24(水) 21:56:07.33ID:rx27zQJP
ある牧場では100頭の羊を放すと15日間で牧草がなくなり、
120頭の羊を放すと10日間で牧草が食べつくされました 
この牧場で80頭の羊を10日間放した後、
さらに何頭xかの羊を加えたところ、
加えてから4日間で牧草は食べつくされました
後から加えた羊は何頭ですか
ただし、牧草は1日に一定量a生え、また、
どの羊も1日で同じ量uの牧草を食べるものとします

(ヒント:最初からある草の量をbとおく)

45132人目の素数さん2018/10/24(水) 22:16:23.48ID:6bBkZpTx
ニュートンのパチモンか

46132人目の素数さん2018/10/24(水) 22:20:12.89ID:3j5JE9tl
100

47132人目の素数さん2018/10/24(水) 22:22:52.34ID:3j5JE9tl
問題文見間違えた >46はなしで

48132人目の素数さん2018/10/24(水) 22:31:23.90ID:3j5JE9tl
80

49132人目の素数さん2018/10/24(水) 23:48:05.98ID:LB37fX3V
>>34

〔前スレ.993〕
 aを正の定数とする。
xyz空間において,円柱 yy + zz ≦ aa と角柱 |x| + |z|≦ a との共通部分をKとする。
(1) Kの体積を求めよ。
(2) Kの表面積を求めよ。

50132人目の素数さん2018/10/25(木) 00:16:28.74ID:0sa6guuR
>>49
(1)
z=一定の平面で切ると、
 |x| ≦ a - |z|,
 |y| ≦ √(aa-zz),
の長方形。

V = 8∫[0,a] (a-z)√(aa-zz) dz = (2π - 8/3)a^3 = 3.61651864a^3

51132人目の素数さん2018/10/25(木) 00:20:46.17ID:3neCGX+4
a,b,cは素数で、2≦a≦b≦cかつa+b>cを満たす。
AB=c,BC=a,CA=bである△ABCの面積をS(a,b,c)とする。

(1)有理数pと自然数nを用い、S(a,b,c)=p√nと表したとき、n=1とならないことを示せ。

(2)次の命題の真偽を述べよ。
「どのような素数qについても、a,b,cをうまく選ぶことで、n=qとなるようにできる」

52132人目の素数さん2018/10/25(木) 08:36:23.80ID:yl10Tcfs
高専2年
行列
(2)は簡単ですが(1)の固有値が求まりません
お願いします

https://i.imgur.com/3dtlh8V.jpg

53132人目の素数さん2018/10/25(木) 08:42:17.38ID:JdbNzNMl
わからないんですね

54132人目の素数さん2018/10/25(木) 09:25:25.86ID:0sa6guuR
>>52

固有値   (固有ベクトル)^t
----------------------------------
 1+2a   (1/√3,1/√3,1/√3)
 1-a   (1/√6,1/√6,-2/√6)
 1-a   (1/√2,-1/√2,0)

1-a は重根なので、固有ベクトルの取り方がいくつもあります。
a=0 つまり A=E のときは任意のベクトルが固有ベクトルです。

55132人目の素数さん2018/10/25(木) 09:58:35.15ID:0sa6guuR
>>50 (補足)

∫(a-z)√(aa-zz) dz
 = ∫[(1/2)a^3 -aaz -azz +z^3]/√(aa-zz) dz + (a^3)/2・∫1/√(aa-zz) dz
 = (1/6) (2aa+3az-2zz) √(aa-zz) + (a^3)/2・arcsin(z/a) +c,

56132人目の素数さん2018/10/25(木) 10:42:44.15ID:G7anWKpK
「無」に勝るものは何もありませんか?

57132人目の素数さん2018/10/25(木) 10:45:54.04ID:cU6atyIc
>>44
増える草の量+最初の草の量-食べる草の量=0
として式を作る。
15a+b-100*15u=0
10a+b-120*10u=0
14a+b-(80*14+x*4)u=0
これを解くとx=80

58132人目の素数さん2018/10/25(木) 11:38:07.42ID:BJ8Ls50p
>>38
勝手にtで置いてたけどpだったかw

59132人目の素数さん2018/10/25(木) 11:42:09.86ID:BJ8Ls50p
面白スレの795で、宝は2つのまま、縦と横のマス数をそれぞれn、n+1と置いたとき、横に沿って探した方が相手より先に見つけやすいことは3,4の場合でそうだったことから容易に想像出来るが、その証明は出来るだろうか?

60132人目の素数さん2018/10/25(木) 11:48:03.89ID:BJ8Ls50p
縦nマス、横n+1マスのn(n+1)マスのうちランダムに選ばれた2マスにそれぞれ宝が眠っている。
縦1列を探し終えたらすぐ右の1列に移って宝を探していく方法をとるP君と、横1行を探し終えたらすぐ下の1行に移って宝を探していく方法をとるQ君が、同時に左上の地点から探索を開始した。
例えば、n=3の時はP君はAEIBFJCGKDHLの順で探す。Q君はABCDEFGHIJKの順で探すことになる。

ABCD
EFGH
I JK L

1つの地点を捜索するのにかかる時間は同じで、相手が1度探し終えた地点を重複して調べることも当然ある。
相手より先に宝を見つけた方を勝者とする。同時の場合は引き分けとする。
どちらの方が有利になるだろうか?

61132人目の素数さん2018/10/25(木) 12:09:57.32ID:pgMxDp3h
え?3x4なら横からやったほうがいいの?
直観的には同じだけど…

62132人目の素数さん2018/10/25(木) 13:26:11.80ID:Gnr41rTz
50の(2)ってどうすればいいの?

63132人目の素数さん2018/10/25(木) 13:27:04.86ID:Gnr41rTz
>>62
49のでした

64132人目の素数さん2018/10/25(木) 13:27:17.09ID:Gnr41rTz
>>62
49のでした

65132人目の素数さん2018/10/25(木) 14:32:32.99ID:/l3Dn7CN
>>64
切断面は 半分の楕円が4つなので簡単、残りの円柱側面は積分で求める。
S = 2 * (π a (√(2) a) ) + 4 a² ∫ [0, +π] dθ (1- sinθ)
以下略

66132人目の素数さん2018/10/25(木) 15:22:53.04ID:wVAS8Odg
α,β,γ は α>0,β>0,γ>0,α+β+γ=π を満たすものとする.このとき, sinαsinβsinγ の最大値を求めよ.

最もエレガントな回答を教えてください。
ごちゃごちゃ一つ固定して微分すればすぐ解けますが
対称性から一発で解けたりしませんか?

67132人目の素数さん2018/10/25(木) 15:26:52.62ID:pgMxDp3h
>>66
面積に直したら、3項の相加相乗の問題に帰着するから一瞬じゃないの?

68132人目の素数さん2018/10/25(木) 15:31:26.94ID:pgMxDp3h
あんまり一瞬でもないな
適当すぎw

69132人目の素数さん2018/10/25(木) 15:53:08.30ID:l+i4tsAg
>>66
よく知られてるのは log sin x の凸性使うやつだな。

70132人目の素数さん2018/10/25(木) 15:56:31.23ID:d9pvisw+
無に勝てるものはありますか?

71132人目の素数さん2018/10/25(木) 16:01:35.27ID:jGg55AkS
z/{((z-1)^2)((z-2)^3)}

の各特異点における留数を求めるのって
z=1 だったら
(z-1)^5をかけて4回も微分して極限をとるっていうことしないといけないのってめちゃくちゃ手間がかかると思うんですけど
そうする以外に簡単にもとまる方法ってないですか?

72132人目の素数さん2018/10/25(木) 16:10:31.43ID:/l3Dn7CN
>>66
f(α,β,γ) = sinαsinβsinγ と置く.
領域境界では f = 0 、領域内点では f > 0 .
境界が素直なので f の勾配ベクトルが平面 α + β + γ = π と直交する点を探せばよい.
つまり cosα sinβ sinγ = sinα cosβ sinγ = sinα sinβ cosγ より
tanα = tanβ = tanγ ∴ α = β = γ = π/3
f = (√(3)/2)^3 = (3/8)√3 を得る.

73132人目の素数さん2018/10/25(木) 16:48:51.00ID:/l3Dn7CN
>>71
z/{((z-1)^2)((z-2)^3)}
= {(z-1) + 1}/{((z-1)^2)((z-1 - 1)^3)} (以降 h = z-1 と置く)
= -(1/h + 1/h^2) * (1 + h + h^2 + ...)^3
= -(1/h + 1/h^2) * (1 + 3h + ...)
= -1/h^2 - 4/h - ...
1/h の係数だけ拾えばよい

(z-2 + 2)/{((z-2 + 1)^2)((z-2)^3)}
= (1/h^2 + 2/h^3) { 1 - h + h^2 + ... }^2
= (1/h^2 + 2/h^3) { 1 - 2h + 3h^2 +... }
以下略

74132人目の素数さん2018/10/25(木) 17:03:07.15ID:jGg55AkS
>>73
おおおおおおおお
確かに!!!!!!!!
ありがとうございます

75132人目の素数さん2018/10/25(木) 17:20:06.01ID:3neCGX+4
>>51
これお願いします
(2)がわかりません

76132人目の素数さん2018/10/25(木) 17:42:08.46ID:0sa6guuR
>>69

最もエレガントな解答は log(sin(x)) の凸性使えば一発で出ますが >>69

GM-AM で下準備
 sinα sinβ sinγ ≦ {(sinα + sinβ + sinγ)/3}^3
してから sin(x) の凸性使う
 (sinα + sinβ + sinγ)/3 ≦ sin{(α+β+γ)/3} = sin(60゚) = (√3)/2,
ほうが簡単かもです。

77132人目の素数さん2018/10/25(木) 18:03:57.91ID:3neCGX+4
こういうのをゴリ押しで解こうとするたび思うんだが、sinxをexp(ix)で表しても手間は減らないもの?

78132人目の素数さん2018/10/25(木) 18:36:49.94ID:Gnr41rTz
>>65
ありがとうございます

79132人目の素数さん2018/10/25(木) 19:30:25.68ID:StgroO81
>>60
コンピュータでシミュレーションしてみた。

n=3のときは (P1st::P君が先に見つける宝の埋没場所の組み合わせ数)

> t342=treasure(3,4,2)
P1st Q1st even
26 27 13

n=4のときは

> t452=treasure(4,5,2)
P1st Q1st even
84 83 23

常に横に探す方が有利ではないようだ。

Rでのコードはここ

http://tpcg.io/d6OYvn

80132人目の素数さん2018/10/25(木) 19:45:57.54ID:StgroO81
>>79
nを変化させてP,Qが先に見つける宝の配置を計算させてみた。

大きいほうが有利になる。

> t(sapply(1:15,treasure1))
P1st Q1st even
[1,] 0 0 1
[2,] 4 5 6
[3,] 26 27 13
[4,] 84 83 23
[5,] 203 197 35
[6,] 413 398 50
[7,] 751 722 67
[8,] 1259 1210 87
[9,] 1986 1910 109
[10,] 2986 2875 134
[11,] 4320 4165 161
[12,] 6054 5845 191
[13,] 8261 7987 223
[14,] 11019 10668 258
[15,] 14413 13972 295

81132人目の素数さん2018/10/25(木) 20:20:58.73ID:Gnr41rTz
2点(0,0,0),(2,0,1)を通る直線をl,2点(1,-2,0),(0,-4,-1)を通る直線をmとし、l,mをz軸のまわりに、1回転して得られる曲面をそれぞれα、βとする。

82132人目の素数さん2018/10/25(木) 20:23:37.03ID:Gnr41rTz
>>81
2平面z=0,z=5とαで囲まれた部分をA,2平面z=0,z=5とβで囲まれた部分をBとするとき、共通部分A∩Bの体積を求めよ

83132人目の素数さん2018/10/25(木) 20:29:57.03ID:Gnr41rTz
>>82
詳しい解説お願いします。

84132人目の素数さん2018/10/25(木) 20:54:39.62ID:Gnr41rTz
>>82
>>83
自分の答えは2511π/15となったんですがあっていますか?

85132人目の素数さん2018/10/25(木) 21:00:26.45ID:gnoSWQS2
約分

86132人目の素数さん2018/10/25(木) 21:06:36.11ID:Gnr41rTz
>>85約分すればあっていますか?

87132人目の素数さん2018/10/25(木) 21:38:41.16ID:mkO25Lni
>>60>>61
Ωの部分集合を事象と言う
Ω自身は全事象と言う

Ω={A,B,C,D,E,F,G,H,I,J,K,L}となる

各 i (1≦i≦12) が根元事象である

最初に宝が出るという事象A={宝}で確率P(A)は

P(A)=1/12 となる

最初に探す方向を i
列が変わる時を j として

最初に宝が出るという事象Aと事象Bを考える.

A={(i,j)| i または j が宝}
B={(i,j)| i または j が宝}

Ω={(i,j)|1≦i≦n,1≦j≦n+1}となり

このn(n+1)通りの各要素が根元事象

縦方向に探査する場合

Ω={(i,j)|1≦i≦n,1≦j≦n+1}から

#A=n(n+1)−n(n−1)=2n

#Aは事象Aに含まれる要素の個数

横方向に探査する場合

Ω={(i,j)|1≦i≦n+1,1≦j≦n}から

#B=n(n+1)−n(n−1)=2n

最初に宝が出る確率は

∴P(A)=P(B)=2n/n(n+1)

88132人目の素数さん2018/10/25(木) 21:52:35.93ID:Gnr41rTz
>>84
計算ミスしてました
156πです

89132人目の素数さん2018/10/25(木) 21:58:55.19ID:aLWZN9hC
σをn次の置換とする。R^nからR^nへの写像で、(x_1,...,x_n)を(x_σ(1),...,x_σ(n))にうつすものは連続であることを示して下さい。

90132人目の素数さん2018/10/25(木) 22:01:08.70ID:pgMxDp3h
直観的に考えたら違う理由が思いつかないから書いたんだけど…
何故違うかもしれないと考えたのかわからないレベルで違う理由が思いつかない

ABCDEFGHIJK
AEIBFJCGKDHL
と並んでる状態で、A-Kのうち2個がランダムで当たり
最初の当たりが左に近いのはどっち?ってことじゃん

>>80では有意差が有るように見えるけど、何故なのかよくわからない

91132人目の素数さん2018/10/25(木) 22:01:25.95ID:yIeks/2s
>>87
読んだ人の時間を無駄遣いさせるような明らかな誤答は慎めよ。

92132人目の素数さん2018/10/25(木) 22:03:12.46ID:yIeks/2s
>>90
別スレの解説をコピペ

なるほどねえ
確かにQの方が微妙に先に見つける場合が多いな

Pが先に見つけるのは以下の26通り
CE,DE,DI,EF,EG,EH,EI,EJ,EK,EL,FG,FH,FI,FJ,FK,FL,GI,GJ,HI,HJ,IJ,IK,IL,JK,JL,KL

Qが先に見つけるのは以下の27通り
BC,BD,BF,BG,BH,BI,BJ,BK,BL,CD,CF,CG,CH,CJ,CK,CL,DF,DG,DH,DJ,DK,DL,GH,GK,GL,HK,HL

同時に見つけるのは以下の13通り
AB,AC,AD,AE,AF,AG,AH,AI,AJ,AK,AL,BE,CI

93132人目の素数さん2018/10/25(木) 22:05:27.49ID:mkO25Lni
>>91
具体的な反例を伴わないのは詭弁ですよ

94132人目の素数さん2018/10/25(木) 22:09:37.49ID:yIeks/2s
>>93
既に>80で実証済

95132人目の素数さん2018/10/25(木) 22:31:29.47ID:StgroO81
>>80

n=2

ABC
DEF

の場合

短軸方向探索Pが先に宝を発見する埋め方:4通り
> print(matrix(LETTERS[t232$P1st],nrow=2),quote=F)
[,1] [,2] [,3] [,4]
[1,] C D D E
[2,] D E F F

長軸方向探索Qが先に宝を発見する埋め方:5通り
> print(matrix(LETTERS[t232$Q1st],nrow=2),quote=F)
[,1] [,2] [,3] [,4] [,5]
[1,] B B B C C
[2,] C E F E F

同時に宝を発見する埋め方:6通り
> print(matrix(LETTERS[t232$even],nrow=2),quote=F)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] A A A A A B
[2,] B C D E F D

96132人目の素数さん2018/10/25(木) 22:40:16.52ID:pgMxDp3h
なんか納得できない結果が出てきてて頭がぐるぐるううううう

97132人目の素数さん2018/10/25(木) 22:53:50.48ID:mkO25Lni
そんなの当たり前じゃん(´・ω・`)

等確率にしかならないのに無理やり差異を
見つけようとしているもん

98132人目の素数さん2018/10/25(木) 22:56:19.95ID:yIeks/2s
>>96
>95の操作をn=20までやってみた。

> t(sapply(1:20,treasure1))
P1st Q1st even
[1,] 0 0 1
[2,] 4 5 6
[3,] 26 27 13
[4,] 84 83 23
[5,] 203 197 35
[6,] 413 398 50
[7,] 751 722 67
[8,] 1259 1210 87
[9,] 1986 1910 109
[10,] 2986 2875 134
[11,] 4320 4165 161
[12,] 6054 5845 191
[13,] 8261 7987 223
[14,] 11019 10668 258
[15,] 14413 13972 295
[16,] 18533 17988 335
[17,] 23476 22812 377
[18,] 29344 28545 422
[19,] 36246 35295 469
[20,] 44296 43175 519

99132人目の素数さん2018/10/25(木) 22:58:30.06ID:yIeks/2s
シミュレーションしても>92の結果に合致。

> x=c(1,1,rep(0,10))
> PQ <- function(){
+ Q=sample(x)
+ z=matrix(Q,ncol=4,byrow=T)
+ P=as.vector(z)
+ c( even=which.max(P) == which.max(Q),
+ p1st=which.max(P) < which.max(Q),
+ q1st=which.max(P) > which.max(Q))
+
+ }
> k=1e6
> re=replicate(k,PQ())
> mean(re['even',]) ; 13/(26+27+13)
[1] 0.197025
[1] 0.1969697
> mean(re['p1st',]) ; 26/(26+27+13)
[1] 0.393803
[1] 0.3939394
> mean(re['q1st',]) ; 27/(26+27+13)
[1] 0.409172
[1] 0.4090909

100132人目の素数さん2018/10/25(木) 23:06:23.26ID:yIeks/2s
>>96
宝の埋め方の組み合わせを列挙して分類したら
>95のようになるのは同意?

新着レスの表示
レスを投稿する