幾何の問題作ったので、解いて評価して下さい

1132人目の素数さん2018/09/06(木) 20:03:06.96ID:6z8FTJmN
https://imgur.com/yDlUbOV.jpg

あと、自分は大学数学に詳しくないので、解答は出来るだけ高校数学でお願いします

2132人目の素数さん2018/09/06(木) 20:04:56.28ID:iUmlvUh5
 
    γ⌒'⌒''⌒;⌒'ヽ、
   ./          ヽ
   (_ノ人ノノ人ノヘ)ヽソ,_)
   |    .⌒    ⌒ .|
   |   (●)  (●)|
   |        ,_)  ! 氷河期世代さんですか?
   |.    ┌===┐ .| 優秀なんですよね
   ヽ    ヽ   ./ /  お仕事何されてますか?
    ,\    `=' /、
   .(/|      .|\)
   /\.!      .!/\
  /   .|\    /|   ヽ
  |   Φ \_/ Φ   |
  |                !
      ゆとり世代

3132人目の素数さん2018/09/06(木) 20:55:51.50ID:RUmGAPRF
釣ったつもりなのか?

∠ABC<60°のとき
円周角の定理より∠BOA=120°で、OA=OBより∠OAB=30°
直線AOとBCの交点をXとすると、
∠AXB=180°-(∠ABC+∠OAB)>90°となるので、
Bを通りAOと垂直な直線は△ABCの内部を通らない。
これは、BP⊥AOで、点Pが△ABCの内部にあることと矛盾する。

∠ABC≧60°のとき
∠B≧∠C≧∠Aとなるので、CA≧AB≧BC
このとき、点Aと点Cは、Bを中心とした半径CAの円の周または内部にあり、
△ABC全体がこの円の周または内部に含まれる。
これは、この円周上にある点Pが△ABCの内部にあることと矛盾する。

以上より、この問題の設定のように点Pをとることは不可能である。

終了

4132人目の素数さん2018/09/06(木) 21:10:51.97ID:6z8FTJmN
>>3
上の画像の外心は三角形APCです。読みにくかったらすみません

あとそれとは別に不備があったので、角PBC+30°=角PACを追加して下さい
これで解けるはずです。

5132人目の素数さん2018/09/06(木) 22:03:26.52ID:uPeGrTCi
三角形の外心は、三角形の辺の垂直二等分線の交点です。

6132人目の素数さん2018/09/07(金) 05:39:25.16ID:6vSaYILg
東大で出したらどうなるんだろう

7132人目の素数さん2018/09/07(金) 15:26:23.63ID:fHX4MdRJ
なにげに良問っぽいな。

8132人目の素数さん2018/09/07(金) 23:09:35.31ID:JabdxoXg
ありがとうございます

あと、ヒントを出すと、答えは整数値では無いですし、小数でも無いです。

9132人目の素数さん2018/09/07(金) 23:24:02.94ID:pUW7CRYW
なんだよ
幾何の問題かと思って真面目にやって損したわ

10132人目の素数さん2018/09/07(金) 23:30:55.98ID:JabdxoXg
>>9
いえ、sinの値しか出ないとかそういう問題では無いです。きちんと値として出ますし、解法は小学生でも解けるようにしています。

11イナ ◆/7jUdUKiSM 2018/09/08(土) 12:57:40.03ID:QvekrgRD
>>1追加>>4
∠OAC=∠OCA=a、∠PBC=bとおき、
BOの延長線とACの交点をQとすると、△OAPは底角45°の直角二等辺三角形で、三角形QBCの内角の和は、
a+45°+45°+b+60°=180°
∴a+b=30°――@
追加条件より、
b+30°=45°+a
∴b-a=15°――A
@Aを辺々引くと、
2a=15°
∴a=7.5°
Aに代入し、
b=15°+a=15°+7.5°=22.5°
∠OPC=∠OCP=(180°-45°-45°-2a)÷2=37.5°
∠ACP=∠OCA+∠OCP
=∠OAC+∠OPC
(∵△OPC、△OCAは二等辺三角形だから底角が等しい)
∴∠ACP=∠OCA+∠OCP
=7.5°+37.5°=45°

文字化けがなければあってると思う。おもしろかった。

12イナ ◆/7jUdUKiSM 2018/09/08(土) 16:56:41.07ID:QvekrgRD
>>11
PB=ACが使えてるか否か気になるところではありますが、整数値ではないというヒントを忖度し、弧度法で表すと、
∠ACP=45°=π/4

13132人目の素数さん2018/09/08(土) 17:34:14.13ID:K9AhmXKm
簡単だから解かない

14132人目の素数さん2018/09/08(土) 19:35:47.59ID:yNhevjgh
>>11
問題文の条件は角POA=90°ではなく、BPとAOが直角で交わっているということです。
あとで図と文字をもう一度きれいに書いてからあげます。

15132人目の素数さん2018/09/08(土) 19:39:32.68ID:yNhevjgh
あと、値は度数法で表したときに、分数となります

16132人目の素数さん2018/09/09(日) 08:30:44.19ID:mPl1XXuZ
分母はどうやら7だね。
http://imgur.com/1JfiP6X.png
さて、どうやって解くか…

17132人目の素数さん2018/09/09(日) 13:00:24.81ID:vfboXXpV
開成の中学入試に似たような問題あった。設定が似てるだけで中身は全然違うが。

18 【大吉】 2018/09/09(日) 13:47:26.82ID:G3BrieaH
俺があした雨降ったら解いてやるよ。>>16それに似た図が描けたよ。まだPB=ACを使ってない段階で未知数二つ。解けると思う。力業で解く。前>>12

19132人目の素数さん2018/09/09(日) 20:36:04.98ID:t4LHrXX5
>>16
そうです。

20132人目の素数さん2018/09/09(日) 20:36:37.21ID:t4LHrXX5
>>18
ありがとうございます。

21 【かん吉】 2018/09/09(日) 21:32:28.50ID:G3BrieaH
>>16この図だと、
∠PAC-∠PBC=30°もないんじゃないの?
>>18

22132人目の素数さん2018/09/09(日) 21:57:21.59ID:t4LHrXX5
>>21
自分の見た限りではこの図は結構正確だです。もし30°も差がなかったとしても、この図で解いていて、支障が出ることはないと思います。

23 【大吉】 2018/09/09(日) 22:30:35.86ID:G3BrieaH
>>222次元に存在しえない図形なら解けません。

∠PBC+30°=∠PACとなるように描いてください。
>>21

24132人目の素数さん2018/09/09(日) 23:47:35.41ID:mPl1XXuZ
A(420,63)
B(48,375)
C(600,375)
P(346,172)

∠PAC 64.15418627°
∠PBC 34.26300622°

この画面の精度だと0.1度くらいの誤差は出てしまうがそれは勘弁してほしい。

25イナ ◆/7jUdUKiSM 2018/09/10(月) 21:10:19.38ID:WO5VBddL
>>23;;;;;;;;
;;;;;;;;;;;;;;
;;;;;;;;;;;;;;
;;;;;;;;;;;;;;
;;;;;;;;;;;;;;
∠ACP=x゚とおくと、
((-_-)7x+30=180
(っц)~ ∴x=150/7
「 ̄ ̄ ̄ ̄];;;;
■/_UU\■;;;;

26132人目の素数さん2018/09/11(火) 01:46:52.67ID:5wZvlX50

27イナ ◆/7jUdUKiSM 2018/09/11(火) 17:00:47.60ID:H4OjCN4y
>>25
b=∠PBC=45-x/2
a=∠CAP=∠PBC+30=75-x/2
c=∠OCA=15-x/2
b+c+x=60
∠AOP=2x
∠APB=180-x
∠POC=150-x
∠PCB=60-x
∠BPC=120+x-∠PBC
   =75+3x/2
∠OPC=x+15-x/2
   =15+x/2
BPの延長線とOAの交点をQとすると、
∠OPQ=90-2x

28イナ ◆/7jUdUKiSM 2018/09/12(水) 04:07:28.90ID:jQq4DjXA
>>27
やっぱりBP=ACが使えてないのかな。
半直線BPとACの交点をQ、BQとACの交点をRとすると、
△APR∽△ACR
∵2角が等しい(∠CAP共通=a、∠APR=∠ACP=x)
これを使うのは、BP=ACを使ったことにならない。
BP=ACより三角形の残りの二辺が等しいことにつなげたいような。
△APCと合同な三角形またはその鏡像をBPにACを接着させて配置してみるか。

29132人目の素数さん2018/09/12(水) 07:45:10.64ID:k8ZDfH9m
>>16の図の配置を前提とすると,途中は省略するが、x=∠OPCとして、
(以下度数法の「°」は省略)
∠PCA=2x-30,∠PAC=90-x,∠APC=120-x,∠BCP=90-2x,∠PBC=60-x
∠BCP>0より,0<x<45
正弦定理とAC=BPより
sin(90-x)sin(90-2x)=sin(120-x)sin(60-x)
整理すると
8(cosx)^3-4(cosx)^2-4cosx+1=0
cosx≠-1なので、両辺にcosx+1をかけると
8(cosx)^4+4(cosx)^3-8(cosx)^2-3cosx+1=0
∴ cos4x+cos3x=0
2cos(7x/2)cos(x/2)=0
0<x<45の範囲でこれを解くと
x=180/7
∴ ∠PCA=150/7

ギリギリ高校数学の知識で。(ただし、>>16の図の配置とならないケースを排除できてない)
初等幾何ではどうするんだ?

30イナ ◆/7jUdUKiSM 2018/09/12(水) 09:48:15.93ID:jQq4DjXA
>>29正弦定理とかは制限してほしい。
でもカンが当たったみたいでうれしい。前>>28

どうにかxや2xを足し集めて7xが作れないものか。

31イナ ◆/7jUdUKiSM 2018/09/12(水) 18:51:56.47ID:jQq4DjXA
∠OCAが∠OCPの1/5になることが導ければ、それがわかりやすいと思う。
>>30
見た感じ、このうすい角度の5倍なら実感が湧く。

32132人目の素数さん2018/09/13(木) 00:18:56.78ID:6Ce9qvvp
https://imgur.com/bph7ihL.jpg
すみません、忘れてました。解答です。

33sage2018/09/13(木) 01:26:39.67ID:ym7qRMJi
>>32
なるほど、7辺の長さの等しい凸多角形の7つの内角のうち5つが等しいことがわかり、
そこからそれが正7角形であることを示すのですね。

34132人目の素数さん2018/09/13(木) 01:32:57.58ID:ym7qRMJi
(しまった、下げ間違った)

ところで、一般にnを5以上の整数として
n辺の長さの等しい凸n角形のn個の内角のうちn-2個が等しいとき、
この凸n角形は正n角形であると言えるでしょうか。
ただし、等しいn-2個はn個の内角のうちどのn-2個であるかは不明であるものとします。

n=5,7では、ざっくり考えて成り立ちそうです。
n=4では成り立たないのは明らかです。(ひし形になるケースが除外できない)

35イナ ◆/7jUdUKiSM 2018/09/13(木) 07:55:08.23ID:Siw0jsy9
>>32「中心角は円周角の2倍」でしたね。
∠AOPが∠ACPの2倍になることはすぐ気づきましたが、
逆に∠POCも∠PACの2倍になる、と。
>>31
PB=ACが使えてなかったんで、PBに二等辺三角形OACを貼りつけるまではできたんですが。

まさか△ABCの中に正七角形の辺が三個半隠れてるとは。

36イナ ◆/7jUdUKiSM 2018/09/13(木) 09:25:03.52ID:Siw0jsy9
>>35
[∠ACP=x゜とおいた場合]
∠PBC=b、∠OCA=cとおくと、
b-c=30
b+c+x=60
∠AOP=2x
∠COP=2(b+30)=2(c+60)
=900/7
(∵正七角形の一つの内角は180×5/7)
2c=900/7-120=30-x
900/7+x=150
7x=150×7-900=150
x=150/7

37イナ ◆/7jUdUKiSM 2018/09/14(金) 01:11:13.12ID:TIJl1tZs
>>36
七つの辺の長さが同じというだけでは正七角形とは言えないわけか。

求める角∠AOP=x°として、
∠COP=150°-x°はわかる。
BCで折り返すとして、O'からBCへの垂線O'H(辺の長さの1/2、∵30°の直角三角形の対辺)を引くと、
∠OPO'と∠PO'Hがそれぞれ(150-x)°になることを示さないと、カンで答えだけ、
x=150/7 (°)と出したのと変わらない。

38イナ ◆/7jUdUKiSM 2018/09/14(金) 03:24:57.24ID:TIJl1tZs
>>37

39イナ ◆/7jUdUKiSM 2018/09/14(金) 03:29:13.35ID:TIJl1tZs
>>37
七つの角のうち五つは、
150-x
とわかるが、あとの二つは違う値になる。
∠OPO'とそのBCについて対称な角の二つ。
なぜだ。
ただの計算間違いか。

40イナ ◆/7jUdUKiSM 2018/09/14(金) 03:52:55.86ID:TIJl1tZs
>>39
未定の二角については、BC以外の辺を持つ四角形の合同から、ほかの五つの角と等しいことが導ける、と。

41イナ ◆/7jUdUKiSM 2018/09/14(金) 18:27:23.41ID:TIJl1tZs
>>40
∠ACP=x、∠CAP=a、∠PBC=b、∠OCA=cとすると、
b=∠PBC=45-x/2
a=∠CAP=b+30=75-x/2
c=∠OCA=15-x/2
∠AOP=2x、∠APB=180-x
∠POC=150-x、∠PCB=60-x
∠BPC=120+x-∠PBC
=120+x-(45-x/2)
=75+3x/2
∠OPC=x+∠OCA
=x+(15-x/2)
=15+x/2
BPの延長線とOAの交点をQとすると、∠OPQ=90-2x
b+c+x=60
 b-c=30
  x=90-2b=30-2c
(xは20°より少し大きいぐらい。少数じゃなく、分母が7なら、カンで、
7x=150 ∴x=150/7と推測できる。
BP=ACを使うために、BPに△OACを貼りつけ、△OACと合同な二等辺三角形O'PBを描く。
∠AOP=2x(∠AOC=xの2倍)と同様、∠COPは∠CAPの2倍。
∠COP=2(b+30°)
=2(c+30°+30°)
=2c+120°
x+2c=30°
∠COP=30°-x+120°
=150°-x
∠O'BC=b-c=30°
O'からBCに垂線O'Hを下ろすと、
O'H=(1/2)O'B=(1/2)O'P
題意よりCO=OP=PO'
五角形COPO'HとBCについて線対称な図形をあわせ、正七角形になる場合、内角はすべて、
(180×5)/7=900/7(°)
150-x=900/7
x=150-900/7
=(1050-900)/7
=150/7
ただ七つの辺の長さが同じというだけで、五角形COPO'HとBCについて線対称な図形をあわせ、正七角形になるとは言えない。カンで答えだけ(150/7)°と出したのと変わらない。
検証する。
∠COP=150-x
∠OPO'=∠OPC+∠CPO'
=∠OPC+∠CPB-∠O'PB
=x+c+180-b-(60-x)-c
=120+2x-b
=120+2x-(45-x/2)
=75+(5/2)x ←あれ? いっしょじゃない。
∠PO'H=360-(150+x)-60
=150-x
2∠OCB=2×(60+c)
=120+2c
=120+(30-x)
=150-x
∠OPO'が違うということはこれとBCについて対称な角も違う。七つの角のうち五つは、
150-x――@
だが、あとの二つは、
75+(5/2)x――A
五角形COPO'HとBCについて線対称な図形をあわせて、七つの辺の長さが同じで、七つの角のうち五つが同じならあとの二つも同じになるしかない。つまり正七角形になる。@Aより、
150-x=75+(5/2)x
7x/2=75
x=150/7(°)

42132人目の素数さん 2018/09/16(日) 21:58:22.08ID:eSg76hBn
>>1 >>32
面白いじゃん

>>29
cosx+1をかけてcos4x+cos3xに持ち込むのうまい

>>16 >>24
何のソフト使ってるか教えてください

43132人目の素数さん2018/09/16(日) 22:14:59.14ID:hdOs0U2+
>>42
GeoGebraじゃね

44132人目の素数さん 2018/09/16(日) 22:21:55.35ID:eSg76hBn
>>43
ありがとうございます
名前だけは聞いたことありましたが触ったことはなかったです
インストールしてみます

45132人目の素数さん2018/09/17(月) 01:01:29.05ID:iMuOAqpT
>>42
>>29 は、8t^3-4t^2-4t+1=0の解がcos(π/7),cos(3π/7),cos(5π/7)となることを
高校数学の範囲でどう説明するかを考えた結果。答えから逆算した無理やりな式変形です。

新着レスの表示
レスを投稿する