キチガイ関数一覧表できたよー(R→R編)

1132人目の素数さん2017/11/02(木) 11:17:18.70ID:q6ku4JXp
・テスト関数
f(x)=I_(-1,1)(x)e^(-1/(1-x^2)) (Iは指示関数)
無限回微分可能であるが、テーラー展開出来ない関数
実関数ならではの性質 実解析では重宝される
キチガイ度低め

〜〜微分可能関数の壁〜〜
・位相幾何学者の正弦曲線
f(x)=sin(1/x)
曲線の長さが局所有限でない
連結だが弧状連結でない
原点付近がキチガイ

・カントールの悪魔の階段
f_0(x)=x,f_{n+1}(x)=(1/2)I_[0,1/3)(x)f_n(3x)+(1/2)I_[1/3,2/3)(x)+(1/2)I[2/3,1](x)(1/2+(1/2)f_n(3x-2))
の各点収束先
カントール集合以外では定数
至るところ微分が0で連続関数なのにも関わらず、0から1まで全ての値を取る連続関数
さらに微分不可能点が非可算無限個存在する
連続だが絶対連続ではない
名前からしてキチガイ

〜〜至るところ微分可能関数の壁〜〜
・ワイエルシュトラス関数
f(x)=(n=0,∞)a^n cos(b^n πx)
(0<a<1,b:奇自然数,ab>1+3π/2)
連続関数なのにも関わらず、至るところ微分不可能
グラフはフラクタル状になっていて、1次元の曲線ではない
見た目においてはこれが1番キチガイかもしれない

〜〜連続関数の壁〜〜
ディリクレの関数
f(x)=I_(Q^c)(x)
有理数では0,無理数では1を返す関数
至るところ不連続
有界なのにリーマン可積分でない関数
すなわち古典的な意味での面積が定義できない
もはやグラフでの想像が付かないキチガイ

〜〜可測関数の壁〜〜
ヴィタリ集合上の指示関数
f(x)=I_(ι(R/Q)(x) (ιはR/QからRへの適当な埋め込み)
あらゆる連続関数の近似も寄せ付けない
もはや現代的な意味の面積すら定義出来ない
測れるとは何なのか、根源的な問いかけに迫るキングofキチガイ関数

145◆2VB8wsVUoo 2017/11/19(日) 01:30:50.01ID:1TUhKzn4

146◆2VB8wsVUoo 2017/11/19(日) 01:31:11.11ID:1TUhKzn4

147◆2VB8wsVUoo 2017/11/19(日) 01:31:27.76ID:1TUhKzn4

148◆2VB8wsVUoo 2017/11/19(日) 01:31:50.15ID:1TUhKzn4

149132人目の素数さん2017/11/19(日) 17:05:45.84ID:3ndH1bA/
>>138
いいじゃねえか
面白い

150◆2VB8wsVUoo 2017/11/19(日) 20:33:15.84ID:1TUhKzn4

151◆2VB8wsVUoo 2017/11/19(日) 20:33:32.20ID:1TUhKzn4

152◆2VB8wsVUoo 2017/11/19(日) 20:33:48.37ID:1TUhKzn4

153◆2VB8wsVUoo 2017/11/19(日) 20:34:04.96ID:1TUhKzn4

154◆2VB8wsVUoo 2017/11/19(日) 20:34:22.20ID:1TUhKzn4

155◆2VB8wsVUoo 2017/11/19(日) 20:34:38.85ID:1TUhKzn4

156◆2VB8wsVUoo 2017/11/19(日) 20:34:55.57ID:1TUhKzn4

157◆2VB8wsVUoo 2017/11/19(日) 20:35:12.67ID:1TUhKzn4

158◆2VB8wsVUoo 2017/11/19(日) 20:35:28.24ID:1TUhKzn4

159◆2VB8wsVUoo 2017/11/19(日) 20:35:50.05ID:1TUhKzn4

160132人目の素数さん2017/11/29(水) 18:51:47.13ID:T4SFA5xC
f(x+y)=f(x)+f(y)が任意実数x,yで成り立つが、線形ではない実関数f

もはや明示すら出来ないキチガイ関数

161132人目の素数さん2017/11/30(木) 02:37:21.74ID:k3GR3Ei0
存在するの?

162132人目の素数さん2017/12/01(金) 14:10:32.72ID:E4H/FaBU
する。
例えば、f(π)/f(1)が任意にとれる。

163132人目の素数さん2017/12/01(金) 15:53:25.90ID:cCs/wmq/
ごめんなさい
よくわからないです

164132人目の素数さん2017/12/01(金) 18:34:26.76ID:/jcte0f7
まずQ-線形には自動的になる
んでもってRはQの完備化だからR線形になるんじゃないの?

165132人目の素数さん2017/12/01(金) 19:21:42.05ID:Ef2ovZkr
fは非連続でもいいんでしょう?

166132人目の素数さん2017/12/01(金) 20:29:16.79ID:0sRH1ldf
>>164,165
当たり前だけど>>160は不連続

167132人目の素数さん2017/12/01(金) 20:53:22.29ID:zImIaypj
>>160がなんかよくわからんな。

話が違うが(疑似)乱数関数って何なのアレ?。
定義的に自己矛盾形容矛盾してない?。
よくPCでプログラムで使う時Time関数をシードにして初期化してたけどさ。

168132人目の素数さん2017/12/01(金) 21:08:08.08ID:zImIaypj
時間にハッシュ関数定義して
非線形な「なにもしない」を定義するようなイメージぐらいしか涌かない。

169132人目の素数さん2017/12/01(金) 21:22:40.39ID:zImIaypj
一径数キリング形式の皆殺しの数学とかと関係とかってある?
スペクトル拡散光線!

170ハロー2017/12/01(金) 22:55:36.41ID:E4H/FaBU
RのQ上の基底って
構成できる?

171132人目の素数さん2017/12/02(土) 01:18:31.63ID:Rqi4KFku
無理

172132人目の素数さん2017/12/02(土) 18:37:19.42ID:cnH1eWaq
ある程度のグラフの概形がイメージできないとキチガイ度を実感しにくいな
選択公理に依存する関数はその点あまり面白くない

173132人目の素数さん2018/01/19(金) 14:20:26.62ID:C/WIJLGk
>>160
これ実在するの?

174◆2VB8wsVUoo 2018/01/22(月) 00:09:18.83ID:vBTdEgh5

175◆2VB8wsVUoo 2018/01/22(月) 00:09:37.14ID:vBTdEgh5

176◆2VB8wsVUoo 2018/01/22(月) 00:10:06.92ID:vBTdEgh5

177◆2VB8wsVUoo 2018/01/22(月) 00:10:31.62ID:vBTdEgh5

178◆2VB8wsVUoo 2018/01/22(月) 00:10:58.28ID:vBTdEgh5

179◆2VB8wsVUoo 2018/01/22(月) 00:11:15.92ID:vBTdEgh5

180◆2VB8wsVUoo 2018/01/22(月) 00:11:32.29ID:vBTdEgh5

181◆2VB8wsVUoo 2018/01/22(月) 00:11:49.32ID:vBTdEgh5

182◆2VB8wsVUoo 2018/01/22(月) 00:12:06.35ID:vBTdEgh5

183◆2VB8wsVUoo 2018/01/22(月) 00:12:23.52ID:vBTdEgh5

184132人目の素数さん2018/01/22(月) 13:11:34.94ID:Df2n+TON
耳栓をしたら世界が変わってワロタ

185132人目の素数さん2018/01/31(水) 15:37:44.71ID:y/89zUEI
f(x,y)=xy^2/(x^2+y^4) ((x,y)≠(0,0)),0 ((x,y)=(0,0))

点(0,0)において、任意の直線方向では連続だけど二変数関数としては連続ではないキチガイ

186132人目の素数さん2018/01/31(水) 19:26:34.42ID:uO3dR+OD
いまいち

187132人目の素数さん2018/01/31(水) 19:26:58.88ID:uO3dR+OD
ていうかスレタイ

188132人目の素数さん2018/02/01(木) 00:26:38.06ID:Rd6aaegj
イキリカスが立てた糞スレ

189132人目の素数さん2018/02/01(木) 01:57:44.49ID:AeRpUQBT
これがイキってるように見えるって気弱すぎw

190132人目の素数さん2018/02/01(木) 11:56:56.24ID:ozAVSfgN
てかイキリ関数ってどんな関数さ?

191132人目の素数さん2018/02/01(木) 23:10:09.17ID:Rd6aaegj
ID:AeRpUQBT = ID:ozAVSfgN
イキリネトウヨ基地外

192132人目の素数さん2018/02/01(木) 23:15:37.05ID:AeRpUQBT
そんな嘘で自分を慰められるのか?

193132人目の素数さん2018/02/01(木) 23:31:26.34ID:Rd6aaegj
↑糞スレ主乙

194132人目の素数さん2018/02/04(日) 15:17:28.90ID:UVSnEAiw
ID:Rd6aaegj
病気だなコイツ

195132人目の素数さん2018/02/17(土) 17:03:42.39ID:ZepfIsNx
xyz空間で、|x|≦1,|y|≦1,|z|≦1で表される一辺2の立方体の領域に対して、
この立方体を座標平面で分割した8つの立方体領域のうち、
xyz≧0となる4つの立方体の内部と、もとの立方体が相似となるようなフラクタル構造を考える
例えば、3変数関数f_1(x,y,z)を、|x|≦1かつ|y|≦1かつ|z|≦1かつxyz≧0のとき1、その他の時0として、
漸化式f_n+1(x,y,z)=f_1(x,y,z)f_n(2|x|-1,2|y|-1,2|y|-1)で表される関数列の
極限f=lim[n→∞]f_nを使ってf(x,y,z)=1となる点の集合
元と相似な4つの図形が相似比1:2で存在するため、フラクタル次元log(4)/log(2)=2をもつ
3次元の広がりを持った2次元のフラクタル図形
体積は0、表面積は元の立方体と同じく2×2×6=24

新着レスの表示
レスを投稿する