モンティーホール問題を高校生にわかるように説明してくれ [無断転載禁止]©2ch.net

1SOUTH2017/03/12(日) 18:23:31.38ID:/Eul2Kt1
モンティーホール問題とは...
プレーヤーの前に閉まった3つのドアがあって、プレーヤーが1つのドアを選択した後、司会のモンティが残りのドアのうちヤギがいるドアを開けてヤギを見せる。

プレーヤーはドアを変更すべきだろうか?
(wikiより)

829132人目の素数さん2018/07/20(金) 13:32:16.71ID:TBvdj7N5
ドア4枚で1回目にチェンジしたケースをまとめると

@司会者が最後に開けたドアが、それまで手付かずのドアだった場合(確率7/16) 
最初に選んだドアが当たりの確率      4/7 (チェンジ → チェンジ)
1回目にチェンジしたドアが当たりの確率  3/7 (チェンジ → ステイ)

A司会者が最後に開けたドアが、挑戦者が最初に選んだドアだった場合(確率9/16)
1回目にチェンジしたドアが当たりの確率  1/3 (チェンジ → ステイ)
2回目にチェンジしたドアが当たりの確率  2/3 (チェンジ → チェンジ)

ドア4枚の場合に、連続チェンジ戦略で勝てる確率
(7/16)*(4/7)+(9/16)*(2/3)=5/8

830132人目の素数さん2018/07/20(金) 14:16:20.70ID:TBvdj7N5
>>828 訂正

× @P(当B|開A)   ○ @P(当B・開A)
× AP(当C|開A)   ○ AP(当C・開A)

831132人目の素数さん2018/07/20(金) 17:08:52.02ID:BtY8bP2t
>>827
P(当A|開C)=@/B=(1/4)/(7/16)=4/7
P(当B|開C)=A/B=(3/8)/(7/16)=3/7

P(A∩B)=P(A)×P(B)であるからして

P(当A|開C)=@xB=(1/4)x(7/16)=7/64
P(当B|開C)=AxB=(3/8)x(7/16)=21/128

何で割り算してんの?

832132人目の素数さん2018/07/20(金) 18:35:14.60ID:TBvdj7N5
>>827 を訂正
× P(当B|開C)=A/B=(3/8)/(7/16)=3/7
○ P(当B|開C)=A/B=(3/16)/(7/16)=3/7

>>831
事象X → 事象Y
(部分X)/(全体) じゃなくて (部分X)/(部分Y) 
事象Yが起こったと分かったもとでの、事象Xが起こる確率

(部分X)にあたるのが、当たりがドアAかつドアCを開く確率
(部分Y)にあたるのが、当たりがドア(AまたはB)かつドアCを開く確率

833132人目の素数さん2018/07/20(金) 18:42:24.70ID:BtY8bP2t
(部分X)/(全体) じゃないと

P(当A|開C)は求められないよ

(部分X)/(部分Y) は

P(当A|開C)にあらず

834132人目の素数さん2018/07/20(金) 18:44:35.53ID:BtY8bP2t
■ドア4枚でドアBにチェンジした時のドアAの確率

P(A)=1/4  P(B)=3/8  P(C)=3/8

ドアCが開けられた時のドアAの確率P(A|C−)は

ドアCがハズレの時P(C−)=5/8かつ
ドアAが当たりの時P(A)=1/4であるから

P(A|C−)=P(A)∧P(C−)=(1/4)x(5/8)=5/32

論理積使えば一発で答えが出る

835132人目の素数さん2018/07/20(金) 18:55:16.87ID:BtY8bP2t

836132人目の素数さん2018/07/20(金) 19:21:58.61ID:TBvdj7N5
>>831
>P(A∩B)=P(A)×P(B)であるからして

その式が成り立つのは事象Aと事象Bが独立であるときのみ
当たりドアや選択ドアを開けられないルールによって
事象Aと事象Bは独立事象ではなく従属事象

837132人目の素数さん2018/07/20(金) 19:42:28.91ID:BtY8bP2t
>>836
P(B)はプレーヤーが選択していて確定事象

このとき

P(A)とP(C)は互いに排反事象になるので

P(A∩C)=0

P(A)とP(C)の関連性だけ調べればいいのであって
P(B)の確率は関係ない

838132人目の素数さん2018/07/20(金) 19:49:37.88ID:TBvdj7N5
>>833
(部分X∩Y)/(部分Y)
(部分Y)を新しい全体の分母として考えなさいという問題

>>834
ドアBが当たりで 且つ ドアCが開けられる確率も計算過程に入れないと
P(A|C−)は求められない
横着せずにきちんと場合分けをしないといけない

839132人目の素数さん2018/07/20(金) 19:54:29.04ID:BtY8bP2t
>>838
P(A|C−)は求められない
横着せずにきちんと場合分けをしないといけない

単なる思い込みだよ
普通に計算できる

840132人目の素数さん2018/07/20(金) 19:59:12.89ID:BtY8bP2t
尤度P(C−|A)=5/8をドアAの当たりの確率P(A)に

掛ければいいだけ

このとき、事象Cが起きた時のという意味の

P(C−)=1で分母に入れなくてもいい

841132人目の素数さん2018/07/20(金) 20:01:16.74ID:BtY8bP2t
シンプルだよシンプル

P(B)の確率は関係ない

それが条件付確率の本質

842132人目の素数さん2018/07/20(金) 21:20:26.99ID:TBvdj7N5
>>840
ドア3枚の標準問題で
P(A)=P(B)=P(C)=1/3  ドアBを選択

ドアCが開けられた場合のドアAが当たりである確率が
P(当A|開C)=2/3 っていうことですら共通認識でないのか?

P(C−)=2/3と思ってるみたいだから、謎の論理積の公式とやらに代入すると
以下みたいな訳が分からん数字が出るけど、本当にこれが正解と思ってる?
P(A|C−)=P(A)∧P(C−)=1/3*2/3=2/9

一応、バカ正直に条件付き確率の問題として解くと

@ P(当A ∩ 開C)=1/3*1=1/3
A P(当B ∩ 開C)=1/3*1/2=1/6

B P(開C)=@+A=(1/3)+(1/6)=1/2

P(当A|開C)=@/B=(1/3)/(1/2)=2/3
P(当B|開C)=A/B=(1/6)/(1/2)=1/3

843132人目の素数さん2018/07/21(土) 01:57:32.13ID:z7jjEcyg
■ドア四枚が三枚になった時の確率は次の通り

P(A)=1/4  P(B)=3/8  P(C)=3/8

844132人目の素数さん2018/07/21(土) 02:04:15.51ID:z7jjEcyg
>>842
最初からドアが三枚の時は
チェンジで当りの確率が二倍になるから

P(当A|開C)=2/3

訳が分からん数字が出てくるのは
しなくていい計算をしているからだよ

ドア四枚の時もP(B)の計算は不要なのに
計算が必要だと思い込んでいる

845132人目の素数さん2018/07/21(土) 02:11:50.40ID:z7jjEcyg
トランプ問題において
シャッフルしてからカードを3枚続けて引くと
すべてダイヤになるという『事象』の生起確率

これは確率1で必ず起きる

山札から三枚続けてダイヤのカードが出る
三枚の個別の確率の積でいい
 
そうじゃなくて山札をシャッフルした後に
三枚ダイヤが出る
(これはトランプ問題の大前提で必ず起きる)
この確率が1という事です

846132人目の素数さん2018/07/21(土) 02:13:07.43ID:z7jjEcyg
モンティホール問題において
『最初にハズレを引く確率は当たりを引く確率の二倍になる』
という気づきが重要なように

トランプ問題においては
『個別のダイヤのカードの確率は計算不要』
という気づきが重要になります

これに気が付かないと
余計な確率の計算をしてしまうことになります

実際の条件付確率の式

P(A)=(13x12x11x10)/(52x51x50x49)
P(B)=(39x13x12x11)/(52x51x50x49)

分母(52x51x50x49)は不要
分子の(13x12x11)も不要

P(A)=10
P(B)=39

P(A)+P(B)=49

P(A)/{P(A)+P(B)}=10/49

847132人目の素数さん2018/07/21(土) 02:37:43.16ID:z7jjEcyg
>>845
山札から三枚続けてダイヤのカードが出る
確率であれば三枚の個別の確率の積でいい

848132人目の素数さん2018/07/21(土) 02:49:58.35ID:aMMyvPDW
確率が1越えてるねw
高校生より馬鹿な拗らせ君は記号もまともに使えないw

849132人目の素数さん2018/07/21(土) 03:18:22.58ID:z7jjEcyg
>>848
どれ?

850132人目の素数さん2018/07/21(土) 03:32:23.87ID:z7jjEcyg
>>842
ドア四枚からドア三枚になる時には
プレイヤーがBのドアに必ずチェンジするので
P(B)=1

ドアが最初から三枚の時は
プレイヤーがBのドアを選ぶ確率は
P(B)=1/3

ゆえに、
P(A|C−)={P(A)∧P(C−)}/P(B)

      =(2/9)x3=2/3

P(C−)=2/3で正解であり、論理積も正しく
標準問題と一致する

851132人目の素数さん2018/07/21(土) 03:58:07.37ID:z7jjEcyg
■以下の式は標準モンティホール問題にのみ当てはまる

@ P(当A ∩ 開C)=1/3*1=1/3
A P(当B ∩ 開C)=1/3*1/2=1/6

B P(開C)=@+A=(1/3)+(1/6)=1/2

P(当A|開C)=@/B=(1/3)/(1/2)=2/3
P(当B|開C)=A/B=(1/6)/(1/2)=1/3

ドア四枚からドア三枚になる時には
プレイヤーがBのドアに必ずチェンジするので
P(B)=1

したがって、上記の式をドア四枚で行うと
最初に選択したドアの確率が上がるという
不自然な答えが出るのです

852132人目の素数さん2018/07/21(土) 03:59:15.19ID:aMMyvPDW
P(〜〜)と書きさえすればそれで確率を表した気になってる
というのも拗らせ君たちの頻出勘違いだよな

状況が変わっても全部P(〜〜)と書いてしまうので
P(B)=1とP(B)=1/3が併記されてても間違いでないと思い込むw

他の問題でよくある例だと
確率が1/2の確率みたいなのを考えるときにP(P(X)=1/2)という馬鹿表現を用いたりとかw

853132人目の素数さん2018/07/21(土) 04:09:04.69ID:z7jjEcyg
>>852
正しい書き方示さないと詭弁になります(*´▽`*)

854132人目の素数さん2018/07/21(土) 04:12:14.44ID:aMMyvPDW
数学が苦手な中高生でも
同問題の中なのに未知数は全部xとおく
みたいな間違いする子が稀に居る

同じ問題の中なのにx=1だったりx=1/3して
本人は見分けがついてるつもりらしいが、そのうち自分でも混乱して間違う

ただし、そういう子に「別物は別の記号で置いて表そう」と教えれば
大抵はちゃんと理解して従ってくれる
そこが馬鹿な拗らせ君とは決定的に違う所

855132人目の素数さん2018/07/21(土) 04:15:20.33ID:z7jjEcyg
P(当A|開C)=@/B=(1/4)/(7/16)=4/7は

三倍大きく見積もられた数値ですので

1/3で補正すると

P(当A|開C)=(4/7)x(1/3)=4/21

856132人目の素数さん2018/07/21(土) 04:17:52.21ID:z7jjEcyg
>>854
早く更正文を書きましょう

857132人目の素数さん2018/07/21(土) 04:21:00.53ID:z7jjEcyg
P(A|C−)=P(A)∧P(C−)=(1/4)x(5/8)=5/32

P(当A|開C)=(4/7)x(1/3)=4/21

悪くない感じではある

858132人目の素数さん2018/07/21(土) 21:17:56.02ID:mnFpkWBR
>>849
事象Xが起こる確率を P(X) と表すならば 0≦ P(X) ≦1 にしかならない
なのに P(A)=10 とか書いちゃってるから
「確率が1超えてるねw」 とつっこまれてるわけ

トランプ問題は P(A):P(B)=10:39 と表現すれば問題はない

859132人目の素数さん2018/07/21(土) 21:37:22.49ID:z7jjEcyg
A=10
B=39

A+B=49

A/(A+B)=10/49

860132人目の素数さん2018/07/21(土) 21:43:07.30ID:mnFpkWBR
>>845
>これは確率1で必ず起きる

前提条件を確率1と同等視するのは、よくある典型的な勘違い
前提条件が起こる確率を(新たな全体)と考えて
それを分母にして計算しなさいというのが条件付き確率の問題

突風でドアCが開いたという問題の場合
ドアCが開いたということは確定で大前提だから
P(開C)=1 である、というのは典型的な間違った解釈
突風はドア3枚の中からランダムに開けるので  P(開C)=1/3

861132人目の素数さん2018/07/21(土) 21:50:11.41ID:z7jjEcyg
>>860
トランプ問題は三枚のカードの生起確率が1だから

A=10
B=39

A+B=49

A/(A+B)=10/49

が導けたんだろう
個別の確率の積を計算してもいいけど
結果は同じになる

862132人目の素数さん2018/07/21(土) 21:59:33.35ID:z7jjEcyg
分母が1になる部分なんていちいち計算に入れても

条件付確率の式の見た目をよくする効果しかない

トランプ問題の本質は三枚のカードの個別の確率の

計算は必要ないことに気付けるかが問われている

863132人目の素数さん2018/07/21(土) 22:30:46.49ID:mnFpkWBR
>>790 訂正
ドア100枚  ステイ連続96回 → 97枚目のハズレのドアを開けた
P(A)=1/100  P(B)=99/200  P(C)=99/200

再選択97回目にドアBにチェンジ → 98枚目のハズレのドアCを開けた

@ P(当A ∩ 開C)=1/100*1=1/100
A P(当B ∩ 開C)=99/200*1/2=99/400

B P(開C)=@+A=103/400

P(当A|開C)=@/(@+A)=(1/100)/(103/400)=4/103
P(当B|開C)=A/(@+A)=(99/400)/(103/400)=99/103

864132人目の素数さん2018/07/21(土) 22:52:00.08ID:mnFpkWBR
>>794 訂正
ドアN枚  連続(Nー4)回ステイ → ドアAからドアBにチェンジ
P(A)=1/N  P(B)=(Nー1)/2N  P(C)=(Nー1)/2N

@ P(当A ∩ 開C)= 1/N*1=1/N
A P(当A ∩ 開C)=(Nー1)/2N*(1/2)=(Nー1)/4N

B P(開C)=(1/N)+(Nー1)/4N=(N+3)/4N

P(当A|開C)=@/B=(1/N)/{(N+3)/4N }=4/(N+3)
P(当B|開C)=A/B={(Nー1)/4N}/{(N+3)/4N }=(N−1)/(N+3)

865132人目の素数さん2018/07/21(土) 23:29:25.07ID:mnFpkWBR
>>850
当たり確率が変動するのは、ドアが開けられた時であり
ドアが選ばれた時ではない

866132人目の素数さん2018/07/22(日) 00:46:41.19ID:1KEdqPaH
ドアN枚  ステイ連続(Nー4)回 → (N−3)枚目のドアを開ける 
P(A)=1/N  P(B)=(Nー1)/2N  P(C)=(Nー1)/2N

ドアAからドアBにチェンジ → ドアAが開けられた

@ P(当B ∩ 開A)={(Nー1)/2N}*1/2
A P(当C ∩ 開A)={(Nー1)/2N}*1

@:A=(1/2):1=1:2
        
P(当B|開A)=@/(@+A)=1/3
P(当C|開A)=A/(@+A)=2/3

ある特定のケースでは
(残り3枚になるまでステイA、直後にチェンジB、最後にドアAを開けられる)
当たり確率がドアの枚数とは関係がなくなる、というところが面白い

ただし、最後にドアAが開けられる確率はドアの枚数と関係がある
P(開A)=@+A=3(N−1)/4N

867132人目の素数さん2018/07/22(日) 00:58:37.62ID:84kHkvnw
>>866        
P(当B|開A)=@x(@+A)
P(当C|開A)=Ax(@+A)

だろ
何で割り算をする

868132人目の素数さん2018/07/22(日) 02:12:35.14ID:1KEdqPaH
>>867
事象X  ドアBが当たり
事象Y  ドアCが当たり
事象Z  ドアAが開けられる
 
事象Zが起こったと分かったもとでの、事象Xが起こる確率

P(X|Z)=P(X∩Z)/P(Z)

(分子)=P(X∩Z)=(当たりがドアB かつ ドアAが開けられる確率)

(分母)=P(Z)= (当たりがドアB かつ ドアAが開けられる確率)
       +(当たりがドアC かつ ドアAが開けられる確率)    

869132人目の素数さん2018/07/22(日) 11:54:17.75ID:1KEdqPaH
ドアN枚  ラスト2回だけ連続チェンジ戦略の平均勝率

@最後に手付かずのドアが開けられる確率    (N+3)/4N
A最後に最初に選んだドアが開けられる確率   3(N−1)/4N

@の場合に、最初に選んだドアが当たりの確率  4/(N+3)
Aの場合に、手付かずのドアが当たりの確率   2/3

(平均勝率)={(N+3)/4N}*{4/(N+3)}+{3(N−1)/4N}*(2/3)
     =(1/N)+{(N−1)/2N}
     =(N+1)/2N

870132人目の素数さん2018/07/22(日) 18:32:46.13ID:84kHkvnw
■ドア四枚が三枚になった時の確率は次の通り

P(A)=1/4  P(B)=3/8  P(C)=3/8

ここからプレイヤーは確率1でBのドアを選ぶ

最後にドアAにチェンジする戦略では
モンティがドアAを開けざる負えない確率は5/8
なので、ドアAが当たりの時の確率1/4をこれで割ると

P(A)/P(C)=2/5……@

プレイヤーがドアAにチェンジで当たりを引く確率は
2/5に上がる

しかし、プレイヤーは必ず最後にチェンジするので
ドアBが当たりの時でもチェンジする

@にこの確率をかけると(2/5)x(5/8)=1/4

チェンジx2戦略でもP(A)=1/4は不変である 

871132人目の素数さん2018/07/22(日) 18:37:57.10ID:1KEdqPaH
>>111
>>112
何を言っているのか今頃になってやっと分かった

P(A)=1/11  P(B)=4/11  P(C)=6/11
ドアCを選択 → ドアAを開ける
@ P(当B ∩ 開A)=(4/11)*(1)=4/11
A P(当C ∩ 開A)=(6/11)*(1/2)=3/11
@:A=4:3
P(当B|開A)=4/7
P(当C|開A)=3/7

Q(A)=1/11  Q(B)=4/11  Q(C)=6/11
ドアBを選択 → ドアCを開ける
@ Q(当A ∩ 開C)=(1/11)*(1)=1/11
A Q(当B ∩ 開C)=(4/11)*(1/2)=2/11
@:A=1:2
Q(当A|開C)=2/3
Q(当A|開C)=1/3

872132人目の素数さん2018/07/22(日) 18:43:21.92ID:1KEdqPaH
>>871 訂正

× Q(当A|開C)=2/3   ○ Q(当A|開C)=1/3 
× Q(当A|開C)=1/3   ○ Q(当B|開C)=2/3

873132人目の素数さん2018/07/22(日) 19:19:42.50ID:84kHkvnw
>>870
P(A)/P(C−)=2/5……@

874132人目の素数さん2018/07/22(日) 20:26:39.48ID:84kHkvnw
>>871
ドアCを選択 → ドアAを開ける
@ P(当B ∩ 開A)=(4/11)*(1)=4/11
A P(当C ∩ 開A)=(6/11)*(1/2)=3/11

の式にある*(1/2)の部分は固定値ではなくて

0<n<1の範囲を取る

875132人目の素数さん2018/07/22(日) 21:14:21.94ID:1KEdqPaH
・標準仮定
@当たり扉はランダムかつ等確率に設定される
Aホストは挑戦者の選んだ扉を開けない
Bホストは必ず残りの扉を一枚開ける
Cホストはハズレの扉しか開けない
Dホストは挑戦者の選んだ扉が当たりのとき、ハズレ扉をランダムかつ等確率に選んで開ける
Eホストは扉を開けた後に必ずswitchの機会を挑戦者に与える

876132人目の素数さん2018/07/22(日) 21:29:19.67ID:84kHkvnw
標準じゃないじゃん

877132人目の素数さん2018/07/22(日) 21:37:30.62ID:84kHkvnw
ドアAを開けることは自明のことなので

@ P(当B ∩ 開A)=(4/11)*(1)=4/11
A P(当C ∩ 開A)=(6/11)*(1)=6/11
@:A=4:6
P(当B|開A)=2/5
P(当C|開A)=3/5

になる

878132人目の素数さん2018/07/23(月) 02:57:38.57ID:rUUZweWw
>例 1 (事前分布が偏っている場合). 扉 A,B,C がアタリである確率をそれぞれ
>P(A) = 65/100, P(B) = 2/100, P(C) = 33/100とおく.
>あなたが A を選ぶと司会者は B がハズレだと示した.
>あなたは扉を C に変更すべきだろうか?

@ P(当A ∩ 開B)=(65/100)*(1)=65/100
A P(当C ∩ 開B)=(33/100)*(1/2)=66/100

@:A=65:66

P(当A|開B)=@/(@+A)=65/131
P(当C|開B)=A/(@+A)=66/131    (答え) 変更すべき

879132人目の素数さん2018/07/23(月) 03:22:51.15ID:rUUZweWw
>>878
× @P(当A ∩ 開B)=(65/100)*(1)=65/100
× AP(当C ∩ 開B)=(33/100)*(1/2)=66/100

○ @P(当A ∩ 開B)=(65/100)*(1/2)=65/200
○ AP(当C ∩ 開B)=(33/100)*(1)=33/100

新着レスの表示
レスを投稿する