X



トップページ数学
737コメント286KB
くだらねぇ問題はここへ書け
0687132人目の素数さん2024/02/28(水) 07:15:42.22ID:ijdyqSaZ
>>686
実数体R上、実数の代数的数の全体は加減乗除の演算に関して体をなし、
実数の代数的数は有理数と同様に実数体R上稠密である
0688132人目の素数さん2024/02/28(水) 07:22:01.52ID:ijdyqSaZ
>>686
実数論の有理数の稠密性も分からない人間に間違いって判定されたくない
0689132人目の素数さん2024/02/28(水) 07:49:43.06ID:ijdyqSaZ
>この矛盾は実数 2^{√2} を代数的数と仮定したことから
>「生じたから」、2^{√2} は実数の超越数である
0690132人目の素数さん2024/02/28(水) 07:52:16.12ID:ijdyqSaZ
>>684
2^{√2} が代数的数であるとする
a=2^{√2} とおく
aは実数の代数的数である
指数関数 y=2^x は単調増加で正の値を取るから、
仮定から a>2 であって、a^2>4 を得る
また、仮定から a^{√2}=2^2=4 であって、(1/a)^{√2}=1/4 である
a>1 から指数関数 y=(1/a)^x は単調減少で正の値を取るから、1/a>1/4 である
よって、4>a>2 であって、2>a>√a>√2 から 4>a^2>a>2 である
故に、a^2>4 と a^2<4 が両立し、実数の大小関係に反し矛盾が生じる
この矛盾は実数 2^{√2} を代数的数と仮定したことから
生じたから、2^{√2} は実数の超越数である
実数の超越数は無理数だから、2^{√2} は無理数である
0691132人目の素数さん2024/02/28(水) 08:47:58.92ID:GD05aVNN
2^{3/2} が代数的数であるとする
a=2^{3/2} とおく
aは実数の代数的数である
指数関数 y=2^x は単調増加で正の値を取るから、
仮定から a>2 であって、a^2>4 を得る
また、仮定から a^{2/(3/2)}=2^2=4 であって、(1/a)^{2/(3/2)}=1/4 である
a>1 から指数関数 y=(1/a)^x は単調減少で正の値を取るから、1/a>1/4 である
よって、4>a>2 であって、2>a>√a>√2 から 4>a^2>a>2 である
故に、a^2>4 と a^2<4 が両立し、実数の大小関係に反し矛盾が生じる
この矛盾は実数 2^{3/2} を代数的数と仮定したことから
生じたから、2^{3/2} は実数の超越数である
0692132人目の素数さん2024/02/28(水) 10:27:53.48ID:ijdyqSaZ
>>691
2^{3/2} が代数的数であることは確定しているから 2^{3/2} にその論法は通用しない
原理的には、実数論では有理数の加減乗除をもとに無理数を定義して有理数体Qを完備化するのと同様に、
実数の代数的数の加減乗除をもとに実数の超越数を定義して実数の代数的数の全体を完備化出来る
その後、実関数について微分積分を展開していくという理論展開も原理的には出来る
その考え方を応用しただけ
0693132人目の素数さん2024/02/28(水) 10:38:28.88ID:ijdyqSaZ
>>691
注意しておくけど、2^{3/2}=2√2 は
有理数体Qに √2 を添加した代数拡大体 Q(√2) に属し、
Q(√2) は超越拡大体ではない
0694132人目の素数さん2024/02/28(水) 10:40:05.03ID:y7FRk2+2
こいつ前もおんなじ突っ込み受けてたやつやろ
一ミリも成長してない
0695132人目の素数さん2024/02/28(水) 10:43:09.56ID:GD05aVNN
>>692
2^{√2} が代数的数であるなら>>690は使えないから
>>690の前に2^{√2} が代数的数でないことを証明しないと
0696132人目の素数さん2024/02/28(水) 10:45:05.76ID:ijdyqSaZ
>>694
そういう微分積分の理論展開も原理的には出来るから、本でも読んでよく考えてみな
0697132人目の素数さん2024/02/28(水) 10:49:14.50ID:GD05aVNN
1<r<2のとき2^{r} が代数的数であるとする
a=2^{r} とおく
aは実数の代数的数である
指数関数 y=2^x は単調増加で正の値を取るから、
仮定から a>2 であって、a^2>4 を得る
また、仮定から a^{2/r}=2^2=4 であって、(1/a)^{2/r}=1/4 である
a>1 から指数関数 y=(1/a)^x は単調減少で正の値を取るから、1/a>1/4 である
よって、4>a>2 であって、2>a>√a>√2 から 4>a^2>a>2 である
故に、a^2>4 と a^2<4 が両立し、実数の大小関係に反し矛盾が生じる
この矛盾は実数 2^{r} を代数的数と仮定したことから
生じたから、2^{r} は実数の超越数である
0698132人目の素数さん2024/02/28(水) 10:58:51.29ID:ijdyqSaZ
有理数体Qに実数の超越数eを添加した超越拡大体 Q(e) の加減乗除をもとに
超越数を定義して Q(e) を完備化することは原理的には出来るが、
このときは超越拡大体 Q(e) を完備化する前に実数の超越数eが既に含まれているので、
体 Q(e) を完備化した後微分積分を理論展開して
それを超越性を示すのに応用することは一般には出来ない
0700132人目の素数さん2024/02/28(水) 11:07:41.61ID:ijdyqSaZ
>>698と同様なことは、一般に実数体Rの部分体なる超越拡大体についていえる
0701132人目の素数さん2024/02/28(水) 12:22:15.14ID:ijdyqSaZ
>>697
という訳で、実数の代数的数の全体をAで表わすことにすれば、
体Aの超越拡大体 A(2^{√2}) についても>>698と同様なことがいえる
だから、>>697の考え方は実数について代数的数か超越数かの判定には適用できない
0702132人目の素数さん2024/02/28(水) 14:00:54.59ID:y7FRk2+2
そもそも>>691の言ってる事が理解できてない時点で数学Aすら理解できてない。
数学Aの時点で自分が落ちこぼれてることすら理解できる知能がない。
0704132人目の素数さん2024/02/28(水) 16:26:43.49ID:y7FRk2+2
数学Aで落ちこぼれてる人間が大学の微積の議論できるはずないやろ
そんなレベルの話すら理解できる知能がないんだよ。
0705132人目の素数さん2024/02/28(水) 16:33:55.99ID:ijdyqSaZ
>>704
高校の微分積分と大学の微分積分が同じだと思ったら大間違い
高校の微分積分では実数論が幾何的直観に基づいていて曖昧だが、
大学の微分積分では幾何的直観に基づかず実数論をする
0707132人目の素数さん2024/02/28(水) 17:07:59.85ID:y7FRk2+2
まぁ高木といっしょ
自分の事世紀の天才とでも思ってるんやろ
高校数学の時点で落ちこぼれてるゴミ
0708132人目の素数さん2024/02/28(水) 17:12:39.85ID:GD05aVNN
指摘が難しすぎるようなので簡単に
4>a>2から2>aは出ない
0709132人目の素数さん2024/02/28(水) 17:16:40.16ID:ijdyqSaZ
>>707
高校数学は計算が大半を占めていて論理的に曖昧な部分があるから
大学数学を理解するのに高校数学をしっかり理解する必要はない
高校の実数論は、連結な数直線の幾何的直観に基づいているから曖昧である
0710132人目の素数さん2024/02/28(水) 17:30:14.99ID:ijdyqSaZ
>>709
間違いの指摘をするなら、回りくどい指摘ではなく
そのように簡単にしてくれた方が分かり易くてありがたい
0711132人目の素数さん2024/02/28(水) 17:31:33.37ID:y7FRk2+2
高木ということ一緒
おそらく糖質なんやろ
少なくとも高校の段階から知能の向上が止まってっる
もっと前かもしれないが
0714132人目の素数さん2024/02/28(水) 17:58:47.43ID:GD05aVNN
>>710
背理法で証明するなら仮定を使って矛盾を導かなければできないっていう根本的な指摘だよ
0715132人目の素数さん2024/02/28(水) 17:59:46.40ID:GD05aVNN
>>713
成功してない
0717132人目の素数さん2024/02/28(水) 19:12:29.16ID:GD05aVNN
>>716
>>714での指摘通り全部間違った証明だよ
0719132人目の素数さん2024/02/28(水) 23:16:32.58ID:9tUy1VVA
高木そっくりwwwwwww
0720132人目の素数さん2024/02/29(木) 02:10:14.79ID:f0/HMLwN
>>717
元々、微分積分の理論を有理数から無理数を定義したときと同様に
実数論から再構成してから微分積分の理論を再展開し、
それを実数の超越性の証明に応用して示す長い証明である
>>716では結果だけを切り取って書いたから間違いに見えるだけ
0722132人目の素数さん2024/02/29(木) 02:18:07.65ID:f0/HMLwN
>>717
実数の代数的数の全体がなす体から実数の超越性を定義して
実数論を再展開するときは最小多項式の次数や
ディオファンタス近似などを使う必要があって、
有理数から無理数を定義した実数論とは様相が全く違う
0723132人目の素数さん2024/02/29(木) 02:49:35.18ID:f0/HMLwN
>>674では集合 A={a^x| xは代数的無理数、aは1より大きい代数的数 } と
実数の代数的数の全体がなす体Bの共通部分 A∩B が空集合であることを示した方が速い
0724132人目の素数さん2024/02/29(木) 03:02:44.91ID:f0/HMLwN
実数の代数的数の全体がなす体から実数の超越性を定義して
実数論を再展開して微分積分の理論を再展開しても、
その再展開した微分積分は従来の微分積分と殆ど同じで、
再展開した微分積分には殆ど使い道がなく意味は殆どないだろうから、
>>674では結果だけを切り取って書いた
0726132人目の素数さん2024/02/29(木) 10:42:57.75ID:f0/HMLwN
[第1段]:集合Aを A={a^x| xは代数的無理数、aは1より大きい実数の代数的数 }
と定義する。Bを実数の代数的数の全体がなす体と定義する
集合Aと体Bの共通部分 A∩B について、A∩B≠∅ と仮定する
集合Aと体Bの定義から、或る代数的無理数x、或る a>1 なる a∈B が存在して、
a^x∈A∩B であって、A∩B⊂B だから a^x∈B である
nを a^x の最小多項式の次数とする
Case1):n≧2 のとき。このとき、a^x はn次の代数的無理数だから、
リウビルの定理より a^x に対して或る c>0 なる実数cが存在して、
両方共に任意の整数p、q p≧1 に対して、|a^x−q/p|>c/(p^n) である
また、無理数 a_x を連分数展開して考えれば、a^x に対して可算無限個の
既約分数 q'/p' p'≧2 が存在して |a^x−q'/p'|<1/(p')^2 が成り立つ
よって、a^x に対して可算無限個の既約分数 q'/p' p'≧2 が存在して
c/(p')^n<|a^x−q'/p'|<1/(p')^2 であって、
c/(p')^{n-2}<(p')^2|a^x−q'/p'|<1 即ち (p')^2|a^x−q'/p'|<1 である
故に、既約分数 q'/p' p'≧2 について分母の p' が p'→+∞ と+∞に発散させて
既約分数 q'/p' p'≧2 を取れば、或る既約分数 q'/p' p'≧2 が取れて
既約分数 q'/p' p'≧2 は (p')^2|a^x−q'/p'|≧1 を満たし矛盾が生じる
0727132人目の素数さん2024/02/29(木) 10:45:31.62ID:f0/HMLwN
Case2):n=1 のとき。このとき、a^x は正の有理数だから、
a^x に対して両方共に或る互いに素な整数 p、q p≧1 が存在して a^x=q/p である
また、仮定からxは代数的無理数である。
xの最小多項式の次数をmとすると、m≧2 であってxはm次の代数的無理数である
よって、Case1)の議論におけるnをmで、a^x をxで、それぞれ書き換えて
Case1)と同様な議論を繰り返せば、矛盾を得る
Case1)、Case2)から、起こり得るすべての場合について矛盾が生じる
この矛盾は、A∩B≠∅ と仮定したことから生じたから、背理法により A∩B=∅ である
[第2段]:よって、AとBの各定義から、Aに属する実数の代数的数は存在しない
故に、Aの定義から、任意の1より大きい実数の代数的数a、
任意の代数的無理数xに対して、a^x は実数の超越数である
[第3段]:故に、任意の正の代数的数a、任意の代数的無理数x
に対して、a^x は実数の超越数である
[第4段]:√2 は代数的無理数なることに注意すれば 2^{√2} は実数であって超越数である
0728132人目の素数さん2024/02/29(木) 11:28:32.36ID:f0/HMLwN
訂正:
[第3段]:任意の正の代数的数a → 任意の1とは異なる正の代数的数a

[第1段]のCase1)の最後の行の補足:
(p')^2|a^x−q'/p'|≧1 → (p')^2|a^x−q'/p'|≧1>(p')^2|a^x−q'/p'|
0729132人目の素数さん2024/02/29(木) 18:31:29.67ID:4ajbydc1
xは代数的無理数であるというだけで矛盾するってことは
代数的無理数は存在しないってことになるんだが
0730132人目の素数さん2024/03/01(金) 11:17:35.68ID:4RjaehFr
[第1段]:集合Aを A={a^x| xは代数的無理数、aは1より大きい実数の代数的数 }
と定義する。Bを実数の代数的数の全体がなす体と定義する
集合Aと体Bの共通部分 A∩B について、A∩B≠∅ と仮定する
集合Aと体Bの定義から、或る代数的無理数x、或る a>1 なる a∈B が存在して、
a^x∈A∩B であって、A∩B⊂B だから a^x∈B である
nを a^x の最小多項式の次数とする
Case1):n≧2 のとき。このとき、a^x はn次の代数的無理数だから、
リウビルの定理より a^x に対して或る c>0 なる実数cが存在して、
両方共に任意の整数p、q p≧1 に対して、|a^x−q/p|>c/(p^n) である
また、無理数 a_x を連分数展開して考えれば、a^x に対して可算無限個の
既約分数 q'/p' p'≧2 が存在して |a^x−q'/p'|<1/(p')^2 が成り立つ
よって、a^x に対して可算無限個の既約分数 q'/p' p'≧2 が存在して
c/(p')^n<|a^x−q'/p'|<1/(p')^2 であって、
c/(p')^{n-2}<(p')^2|a^x−q'/p'|<1 即ち (p')^2|a^x−q'/p'|<1 である
故に、既約分数 q'/p' p'≧2 について分母の p' が p'→+∞ と+∞に発散させて
既約分数 q'/p' p'≧2 を取れば、或る既約分数 q'/p' p'≧2 が取れて
既約分数 q'/p' p'≧2 は (p')^2|a^x−q'/p'|≧1>(p')^2|a^x−q'/p'|
を満たし矛盾が生じる
Case2):n=1 のとき。このとき、a^x は正の有理数だから、
a^x に対して両方共に或る互いに素な整数 p、q p≧1 が存在して a^x=q/p である
また仮定から、aは代数的数だから、aの最小多項式の次数をmとすれば、
m≧1 であってaはm次の代数的数である
0731132人目の素数さん2024/03/01(金) 11:20:33.75ID:4RjaehFr
Case2-1):m≧2 のとき。このとき、aはm次の代数的無理数であって、
Case1)の議論におけるnをmで、a^x をaで、それぞれ書き換えて
Case1)と同様な議論を繰り返せば、矛盾を得る
Case2-2):m=1 のとき。このとき、aは1より大きい正の有理数だから
aに対して両方共に或る互いに素な整数 p''、q'' p''≧1 が存在して a=q''/p'' である
よって、(q''/p'')^x=q/p であって、q≧1 から (q''/p'')^x・(p/q)=1 である
しかし、仮定からxは代数的無理数だから、1とxは有理数体Q上1次独立である
また、有理整数環Zは体Q上の単位元1を含む単位的部分環である
故に、環Z上の加群を考えれば、(q''/p'')^x・(p/q)≠1 であって、矛盾が生じる
Case2-1)、Case2-2)から、n=1 のときにすべての起こり得る場合について矛盾を得る
Case1)、Case2)から、すべての起こり得る場合について矛盾が生じる
この矛盾は、A∩B≠∅ と仮定したことから生じたから、背理法により A∩B=∅ である
[第2段]:よって、AとBの各定義から、Aに属する実数の代数的数は存在しない
故に、Aの定義から、任意の1より大きい実数の代数的数a、
任意の代数的無理数xに対して、a^x は実数の超越数である
[第3段]:故に、任意の正の代数的数a、任意の1とは異なる代数的無理数x
に対して、a^x は実数の超越数である
[第4段]:a=2、x=√2 のとき。√2 は代数的無理数なること
に注意すれば 2^{√2} は実数であって超越数である
0732132人目の素数さん2024/03/01(金) 11:26:28.28ID:4RjaehFr
[第3段]について
任意の正の代数的数a、任意の1とは異なる代数的無理数x
→ 任意の1とは異なる正の代数的数a、任意の代数的無理数x
0733132人目の素数さん2024/03/01(金) 22:56:52.83ID:C0z/65RY
〔問題〕
a,b,c を正の整数とし、1≦a<b<c とする。
 M = 1 + 3^a + 3^b + 3^c
が立方数となるような (a,b,c) の組は無数にあることを示せ。

・高校数学の質問スレ_Part432 - 883
0734132人目の素数さん2024/03/02(土) 14:00:51.98ID:pz54UFyP
有理数と無理数はどちらも無限大に存在するが、仮に有理数と無理数を同数無限大に出尽くしたとしても、更に無理数のほうが多く存在することを証明せよ
0735132人目の素数さん2024/03/02(土) 21:25:10.60ID:ZADy0LT/
有理数を小数で表わすと、
有限桁で切れるか又は循環小数となる。
その循環節の間に1桁ずつ数字を挟もう。

たとえば 3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,…
の 第k項、k+L項、k+2L項、…は循環しないので、
それらを挟んでいくと、すべて無理数になる。
(k, L) の取り方は無限にあるから、
1個の有理数が無限個の無理数に対応する。。。
0736132人目の素数さん2024/03/09(土) 18:28:10.26ID:9TLceQPN
>>733
 (a, b, c) = (n+1, 2n+1, 3n)
 M = (1+3^n)^3,

面白スレ43問目 318-319
0737132人目の素数さん2024/03/20(水) 19:47:12.86ID:kos/Cx4z
一つの無理数、たとえばπにたいして有理数は3、3.1、3.14、3.141、...って無限にあるけど
有理数も無理数もどちらも無限大でいいんじゃね
レスを投稿する


ニューススポーツなんでも実況