くだらねぇ問題はここへ書け

1132人目の素数さん2014/10/04(土) 21:22:05.10
1

269◆2VB8wsVUoo 2018/01/21(日) 09:02:55.00ID:oUqQkvBY

270◆2VB8wsVUoo 2018/01/21(日) 09:03:12.42ID:oUqQkvBY

271◆2VB8wsVUoo 2018/01/21(日) 09:03:29.85ID:oUqQkvBY

272◆2VB8wsVUoo 2018/01/21(日) 09:03:48.42ID:oUqQkvBY

273◆2VB8wsVUoo 2018/01/21(日) 09:04:06.06ID:oUqQkvBY

274132人目の素数さん2018/01/21(日) 09:07:47.28ID:TGpBI6pd
耳栓をしたら世界が変わってワロタ

275132人目の素数さん2018/01/21(日) 18:23:40.00ID:m68ScmO7
>>263
それは、モンティホール問題ではない。

276◆2VB8wsVUoo 2018/01/22(月) 12:31:45.92ID:vBTdEgh5

277◆2VB8wsVUoo 2018/01/22(月) 12:32:08.32ID:vBTdEgh5

278◆2VB8wsVUoo 2018/01/22(月) 12:32:31.64ID:vBTdEgh5

279◆2VB8wsVUoo 2018/01/22(月) 12:32:52.29ID:vBTdEgh5

280◆2VB8wsVUoo 2018/01/22(月) 12:33:13.12ID:vBTdEgh5

281◆2VB8wsVUoo 2018/01/22(月) 12:33:32.74ID:vBTdEgh5

282132人目の素数さん2018/01/22(月) 13:07:16.47ID:Df2n+TON
耳栓をしたら世界が変わってワロタ

283132人目の素数さん2018/01/22(月) 14:32:50.96ID:vRHzEvsP
耳栓をしても、>>263 は、モンティホール問題ではない。

284132人目の素数さん2018/01/28(日) 07:55:27.78ID:8UL7hOGH
子供の算数の問題がありました。なんか納得いきません。

四捨五入して百の位までの数にしたとき、1600になる整数のはんいは、
□□□□から□□□□までです。

答え 1550から1649

ええんか?

285132人目の素数さん2018/01/28(日) 09:56:14.62ID:pLwrCEht
十の位の数に対して四捨五入の処理を施す

286132人目の素数さん2018/01/28(日) 10:05:13.98ID:8UL7hOGH
>>285
この一文があれば納得です。
レスありがとうございます。

287132人目の素数さん2018/02/03(土) 02:53:06.04ID:xvl288yy
〔問題〕
(1) x>0 のとき、log(x)< x-1 を示せ。
(2) a = 2^(1/3)のとき、log(a)=(8/9)(a-1)を示せ。

288132人目の素数さん2018/02/03(土) 05:50:18.14ID:SRNC+iev
>>287
(1)x=1のとき、左辺=右辺=0
よって成立しない
(2)左辺は整係数三次方程式(9x+8)^3=2の解なので代数的数である
右辺(1/3)log2はリンデマンの定理によって代数的数でない
よって成立しない

289132人目の素数さん2018/02/03(土) 05:54:46.33ID:SRNC+iev
>>288
訂正
(2)左辺は整係数三次方程式(9x+8)^3=1024の解なので代数的数である

290132人目の素数さん2018/02/12(月) 21:18:31.36ID:8xETDZ6r
有孔多面体の場合のオイラーの多面体公式
v-e+f+2g=2
これの穴の数gって何の頭文字ですか?
vertex,edge,faceは分かるんですが

291132人目の素数さん2018/02/12(月) 23:09:20.13ID:MYy378Zb
>>290

種数(genus)ぢゃね?
 その切断によって生じる多様体が連結性を維持するような、単純な閉曲線に沿った切断の最大数。従って整数である。

閉曲面では、オイラー標数χ ≡ v-e+f = 2 -2g、ハンドル = g

境界成分をもつ曲面では、オイラー標数χ = 2 -2g -(境界成分の数)

292132人目の素数さん2018/02/12(月) 23:20:30.21ID:MYy378Zb
>>287
(2)
左辺 = log(a)=(1/3)log(2)= 0.231049060
右辺 =(8/9)(a-1)= 0.231040933
よって成立しない

293132人目の素数さん2018/02/12(月) 23:52:04.29ID:MYy378Zb
〔問題〕
√2 + √3 = π
e^π = 20 + π
e^6 = π^4 + π^5
を示せ。

294132人目の素数さん2018/02/12(月) 23:58:40.21ID:MYy378Zb
>>293

(4)  √2 + √3 = π を示せ。

√2 + √3 は整係数4次方程式 x^4 -10x^2 +1 = 0 の解なので代数的数である。

295132人目の素数さん2018/02/13(火) 06:30:04.26ID:ESro8IOF
>>291
有難うございます

296132人目の素数さん2018/02/14(水) 02:40:09.86ID:/bHsoXtp
>>293

(5) e^π = 20 + π を示せ。

e^(iπ)は整数だけど、e^π は超越数だな。
だから成り立つ……という訳ぢゃないけど。

297132人目の素数さん2018/02/17(土) 13:18:26.63ID:A3XYwBOM
ブリルアンゾーンの形は全て切頂多面体になるのでしょうか?
https://en.m.wikipedia.org/wiki/Brillouin_zone

なる場合、14個のブラべ格子において、そのブリルアンゾーンは何の切頂多面体になるのでしょうか?

298132人目の素数さん2018/02/17(土) 13:29:30.04ID:uRXrO5L0
カメラで計算式を撮ると解答を教えてくれるアプリが発見される。試験中に知恵袋に書き込めるガバガバの京大入試はこれで数学満点だろ。 [524061638]
http://leia.5ch.net/test/read.cgi/poverty/1518841675/

299132人目の素数さん2018/02/19(月) 17:29:45.37ID:CMze8r9t
お願いします。このおバカな私に教えてください。

次の極限値は2と4のとの間に存在することを証明せよ。

lim[n→0](1+1/n)^n

[解]

まず、nを正の整数として考えてみると、この(1+1/n)^nはnを増すにしたがって大きくなることが言える。
次に、これを説明する。

y^n-a^n=(y-a)*(y^(n-1)+a*y^(n-2)+a^2*y^(n-3)+・・・・・・a^(n-2)*y+a^(n-1))

となる。y>aとすれば、右辺の第二因数は指揮の中のaをすべてyに改めた n*y^(n-1)よりは小さいから、
次の不等式が考えられる。

y^n-a^n<n*(y-a)^(n-1)

そこで y、aをとくに、

y=1+1/(n-1) a=1+1/n ←@ここが分からない、ここでつっかえています。なぜこうやっておくのか?

とおけば、上の不等式は、

(1+1/(n-1))^n-(1+1/n)^n<{1/(n-1)}*{1+1/(n-1)}^(n-1)

となる。これを簡単にすると、次の不等式となるからである

300132人目の素数さん2018/02/19(月) 17:30:38.54ID:CMze8r9t
>>299
つづき

1+1/(n-1)}^(n-1)<(1+1/n)^n ←A個々の計算結果がなぜそうなるのか?途中計算を詳しくお願いします。

n=1であるときは、与えられた指揮は2となるから、この極限値が2よりも大きいことh言うまでもないが、
これが4よりも小さいことを次に証明する。

まず、nを偶数とするとn=2*mとおいて、

(1+1/n)^n=(1+1/(2*m))^(2*m)={(2*m+1)/(2*m)}^(2*m)={((2*m+1)/(2*m))^m}^2

ところが、(Bここからが分かりません、何でそれぞれの右辺がこうなるのか・・・)

(2*m+1)/2*m<(2*m)/(2*m-1) , (2*m+1)/(2*m)<(2*m-1)/(2*m-2) , (2*m+1)/(2*m)<(2*m-2)/(2*m-3) , ・・・

(2*m+1)/(2*m)<(m+2)/(m+1)

であるから、これらの m-1 個の不等式くを4行以上の等式の最後の項に代入すれば、

(1+1/n)^n<{(2*m+1)/(m+1)}^2 , すなわち、 (1+1/n)^n<{2-1/(m-1)}^2<4  ←Cどうゆう計算したのか?

 また、nが奇数の場合は、これを n+1 にかえると、これが偶数となり、かつ、前の証明によって、式の値も増加
するから、n の場合ももちろん4より値が小さくなる。
 この式は n の値を増すにしたがってその値が増加するが、ある限度 4 をこえることはないから、何かある一定
の極限に達する。この数を e で表しているのである。
{n=100 とおくとこの式の値は 1.01^100=2.704(対数計算による)となり、また、n=1000とおけば 1.001^1000
=2.717(対数計算による)となる。この極限値 e は実はつぎの値となる。e=2.71828188284・・・・・

301132人目の素数さん2018/02/19(月) 17:31:46.40ID:CMze8r9t
>>300
つづき

 また、n が整数ではなくて、n<k<n+1 という数 k である場合には 1/(n+1)<1/k,1/n という不等式が成立するから、
したがってまた、次の不等式が成立する。

{1+1/(n+1)}^n<{1+1/(n+1)}^k,(1+1/k)^k<(1+1/n)^k<(1+1/n)^(n+1)

ところが、両端の式はこれを書き換えて、

(1+1/n)^(n+1)=(1+1/n)^n*(1+1/n) , {1+1/(n+1)}^n={1+1/(n+1)}^(n+1)*{1-1/(n+2)} ←Dこの計算を詳しく教えて
ください

と改めると、極限にはどちらも e*1 すなわち e となる。ゆえに、n はせいすうでなくてもよい。

302132人目の素数さん2018/02/19(月) 23:19:35.50ID:m16ZPD9z
>>299-300
まず証明したいことはこれ
|(1+1/n)^nはnを増すにしたがって大きくなる
これは、任意のn>2について
{1+1/(n-1)}^(n-1)<(1+1/n)^n←A
であることを言いたい。そのために
{1+1/(n-1)}^(n-1)-(1+1/n)^n<0←A'を証明する
A'の左辺
={1+1/(n-1)}^(n-1)-{1+1/(n-1)}^n+{1+1/(n-1)}^n-(1+1/n)^n
=(1-{1+1/(n-1)}){1+1/(n-1)}^(n-1)+{1+1/(n-1)}^n-(1+1/n)^n
={-1/(n-1)}{1+1/(n-1)}^(n-1)+[{1+1/(n-1)}^n-(1+1/n)^n]
第2項がy^n-a^nの形になったので、
y>aならばy^n-a^n<n(y-a)y^(n-1) に
y=1+1/(n-1) a=1+1/n ←@ を代入した以下の式を使います。
{1+1/(n-1)}^n-(1+1/n)^n<n{(1+1/(n-1))-(1+1/n)}{1+1/(n-1)}^(n-1)
つまり[{1+1/(n-1)}^n-(1+1/n)^n]<{1/(n-1)}{1+1/(n-1)}^(n-1)
この不等式の両辺に{-1/(n-1)}{1+1/(n-1)}^(n-1)を加えると
A'の左辺<{-1/(n-1)}{1+1/(n-1)}^(n-1)+{1/(n-1)}{1+1/(n-1)}^(n-1)=0
これでAが証明できました

303132人目の素数さん2018/02/19(月) 23:31:48.40ID:m16ZPD9z
>>300
>ところが、(Bここからが分かりません、何でそれぞれの右辺がこうなるのか・・・)
>(2*m+1)/2*m<(2*m)/(2*m-1) , (2*m+1)/(2*m)<(2*m-1)/(2*m-2) , (2*m+1)/(2*m)<(2*m-2)/(2*m-3) ,

(2m+1)/(2m)=(2m)/(2m)+1/(2m)=1+{1/(2m)}です。
同様に、(2m-(n-1))/(2m-n)=((2m-n)+1)/(2m-n)=1+{1/(2m-n)}となります。
(2m)>(2m-n)>0であれば、{1/(2m)}<{1/(2m-n)}です。
両辺に1を加えて1+{1/(2m)}<1+{1/(2m-n)}よって、
0<n<2mであるnについて、(2m+1)/(2m)<(2m-(n-1))/(2m-n)となります。

>(1+1/n)^n<{(2*m+1)/(m+1)}^2 , すなわち、(1+1/n)^n<{2-1/(m-1)}^2<4  ←Cどうゆう計算したのか?

(2m+1)/(m+1)=(2(m+1)-1)/(m+1)=2(m+1)/(m+1)-1/(m+1)=2-1/(m+1)<2-1/(m-1)です。

304132人目の素数さん2018/02/20(火) 00:03:12.59ID:5ZuZwnt9
>>302-303
すごい、ありがとうございます。

305132人目の素数さん2018/02/20(火) 15:14:40.59ID:On6l/zjh
「母数」「母集団」「分母」の違い、理解してるモメン少なそう [871635759]
http://leia.5ch.net/test/read.cgi/poverty/1519107210/

306132人目の素数さん2018/02/20(火) 17:52:45.81ID:Bhp4lTfX
mを正の整数とするとき、以下の和を求めよ。
Σ[n=1,∞] (1/n^(4m-1)) ((-1)^(n-1)/(e^(πn)-e^(-πn)))

307132人目の素数さん2018/02/21(水) 01:05:46.55ID:H9c/veQI
a_{n+2} = - ( a_{n+1} + a_n )
a_1 = 1
a_2 = 1
の一般項は
n=3m-1,n=3m-2の場合1、n=3mの場合-2
でOK?

308132人目の素数さん2018/02/21(水) 01:21:25.52ID:14F8UTmi
>>307
数学的帰納法で解決

309132人目の素数さん2018/02/21(水) 07:36:43.32ID:JFIkQrIb
>>307
ω^2+ω+1=0として
a_{n+2}-(ω^2)a_{n+1}=ω(a_{n+1}-(ω^2)a_n)
a_2-(ω^2)a_1=1-ω^2
なのでa_{n+1}-(ω^2)a_n=ω^(n-1)(1-ω^2)@
a_{n+2}-ωa_{n+1}=ω^2(a_{n+1}-ωa_n)
a_2-ωa_1=1-ω
なのでa_{n+1}-ωa_n=(ω^2)^(n-1)(1-ω)A
@とAよりa_n=(ω^(n-1)(1-ω^2)-(ω^2)^(n-1)(1-ω))/(ω-ω^2)
n=3m-2の場合、a_n=((1-ω^2)-(1-ω))/(ω-ω^2)=(ω-ω^2)/(ω-ω^2)=1
n=3m-1の場合、a_n=(ω(1-ω^2)-ω^2(1-ω))/(ω-ω^2)=(ω-ω^2)/(ω-ω^2)=1
n=3mの場合、a_n=(ω^2(1-ω^2)-ω(1-ω))/(ω-ω^2)=(ω^2-ω-ω+ω^2))/(ω-ω^2)=-2

310132人目の素数さん2018/02/22(木) 02:09:34.22ID:464amdV1
たぶんこれでも良いはず。
a_{n+2} = - ( a_{n+1} + a_n ) → 1個ずらす
a_{n+3} = - ( a_{n+2} + a_{n+1} ) → 最初の式を代入
a_{n+3} = - ( - ( a_{n+1} + a_n ) + a_{n+1} )
a_{n+3} = a_n
よって、
a_1 = a_4 = a_{3n-2} = 1
a_2 = a_5 = a_{3n-1} = 1
a_3 = a_6 = a_{3n} = -2

311132人目の素数さん2018/02/22(木) 07:03:18.44ID:sQ484qbx
ギリシャ文字の正しい書き順を教えてください
ネット検索では情報が錯綜していてよくわかりません

312132人目の素数さん2018/02/22(木) 09:29:07.28ID:hR7G8FUR
書き順にこだわるのは日本人以外にあまりしらないんだが
中国人の書家はは別にして

313132人目の素数さん2018/02/22(木) 17:05:45.99ID:WVdG5tK3
>>311
とても初歩的で簡単なギリシャ語の本に載っている。
英語の中学の教科書でもアルファベットやその筆記体の書き方は説明されていたの。
なので、ギリシャ文字の書き方を知りたいだけなら、中学(今でいうと小学校か)レベルのギリシャ語の本でいいと思う。

314132人目の素数さん2018/02/22(木) 17:15:52.35ID:WVdG5tK3
あっ、いたの。なんて書いちゃったw

315132人目の素数さん2018/02/22(木) 17:24:23.51ID:WVdG5tK3
>>312
アルファベットの筆記体は他の書体の文字を崩して速く文字を書いて表せるようにした書き方で、決まった書き順がある。
書かれた筆記体の文字の上手下手はともかくとして。

316132人目の素数さん2018/02/23(金) 01:06:31.87ID:dGTz317a
アルファベットの筆記体は日本語の行書体や草書体にあたる。
日本語だと普通の字体は楷書体だが、アルファベットの普通の字体は何と呼ぶんだろう。

317132人目の素数さん2018/02/23(金) 04:10:09.02ID:ytc70m+y
ブロック体

318132人目の素数さん2018/02/23(金) 21:15:34.22ID:eCB2skqw
>>313
ありがとうございます

319132人目の素数さん2018/02/24(土) 16:39:44.29ID:GHvdAv8s
>>306
m=1のとき (1/720)π^3
m=2のとき (13/907200)π^7
m=3のとき (4009/27243216000)π^11

一般形は C_m π^(4m-1)
ここで{C_m}は以下の漸化式を満たす
C_0=1/8, C_m=Σ[j=1,m] C_{m-j} (-1)^(j-1) 2^(2j+1)/(4j+2)!

新着レスの表示
レスを投稿する